Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512463

ABSTRACT

This research explores the welding process of a high-entropy CrMnFeCoNi alloy with iron, unraveling the intricate chemical compositions that materialize in distinct regions of the weld joint. A mid-wave infrared thermal camera was deployed to monitor the cooling sequences during welding. A thorough analysis of the metallographic sample from the weld joint, along with measurements taken using a nano-hardness indenter, provided insights into the hardness and Young's modulus. The element distribution across the weld joint was assessed using a scanning electron microscope equipped with an EDS spectrometer. Advanced techniques such as X-ray diffraction and Mössbauer spectroscopy underscored the prevalence of the martensitic phase within the weld joint, accompanied by the presence of bcc (iron) and fcc phases. In contrast, Young's modulus in the base metal areas displayed typical values for a high-entropy alloy (202 GPa) and iron (204 GPa). The weld joint material displayed substantial chemical heterogeneity, leading to noticeable concentration gradients of individual elements. The higher hardness noted in the weld (up to 420 HV), when compared to the base metal regions (up to 290 HV for CrMnFeCoNi alloy and approximately 150 HV for iron), can be ascribed to the dominance of the martensitic phase. These findings provide valuable insights for scenarios involving diverse welded joints containing high-entropy alloys, contributing to our understanding of materials engineering.

2.
J Microsc ; 290(2): 117-124, 2023 May.
Article in English | MEDLINE | ID: mdl-36871133

ABSTRACT

This work presents the microstructure and properties of two-phase amorphous melt-spun alloys ejected from the crucible with partition between liquids. The microstructure was studied by scanning electron microscopy and transmission electron microscopy and the phase composition was studied by X-ray diffraction. The thermal stability of the alloys was determined using differential scanning calorimetry. The microstructure study proves that the composite alloys are heterogeneous because of the existence of the two amorphous phases obtained due to the use of a partition between the liquids. This microstructure correlates with complex thermal characteristics not found in homogeneous alloys of the same nominal composition. The layered structure of these composites influences the formation of fractures during tensile tests.

3.
Micromachines (Basel) ; 13(12)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36557553

ABSTRACT

In this paper, physicochemical properties of pure Y2O3 and samarium (Sm)-doped Y2O3 transparent ceramics obtained via arc plasma melting are presented. Yttria powder with a selected molar fraction of Sm was first synthesized by a solid-state reaction method. High transparent yttria ceramics were obtained by arc plasma melting from both the pure and Sm oxide-doped powders. The morphological, chemical and physical properties were investigated by X-ray diffraction and scanning electron microscopy. The optical band gap was calculated from the absorption spectra so as to understand the electronic band structure of the studied materials. Samples indicate a series of luminescence bands in the visible region after excitation by laser light in the range from 210 to 250 nm. Magneto-optical measurements were carried out in the 300-800 nm range at room temperature. It can be seen that a maximum Verdet constant ca. 24.81 deg/T cm was observed for 405 nm and this value decreases with increasing wavelength. The potential usefulness of the polycrystalline material dedicated to optics devices is presented.

4.
Materials (Basel) ; 14(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885464

ABSTRACT

The aim of this work was to obtain dense Cu2S superionic thermoelectric materials, homogeneous in terms of phase and chemical composition, using a very fast and cheap induction-melting technique. The chemical composition was investigated via scanning electron microscopy (SEM) combined with an energy-dispersive spectroscopy (EDS) method, and the phase composition was established by X-ray diffraction (XRD). The thermoelectric figure of merit ZT was determined on the basis of thermoelectric transport properties, i.e., Seebeck coefficient, electrical and thermal conductivity in the temperature range of 300-923 K. The obtained values of the ZT parameter are comparable with those obtained using the induction hot pressing (IHP) technique and about 30-45% higher in the temperature range of 773-923 K in comparison with Cu2S samples densified with the spark plasma sintering (SPS) technique.

5.
Materials (Basel) ; 14(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916233

ABSTRACT

The aim of this work was to investigate the features of microstructure, phase composition, mechanical properties, and thermal stability of the two-component melt-spun Ni55Fe20Cu5P10B10 alloy. The development of the microstructure after heating to elevated temperatures was studied using scanning electron microscope and in situ high temperature X-ray diffraction. The high-temperature behavior of the two-component melt-spun Ni55Fe20Cu5P10B10 alloy and Ni40Fe40B20, Ni70Cu10P20, and Ni55Fe20Cu5P10B10 alloys melt-spun from single-chamber crucible was investigated using differential scanning calorymetry at different heating rates and by dynamic mechanical thermal analysis. The results show that band-like microstructure of the composite alloy is stable even at 800 K, although coarsening of bands forming the microstructure of the ribbons is observed above 550 K. Plastic deformation is observed in the composite previously heated to temperatures of 600-650 K. The properties of the composite alloy are generally different than the properties obtained for the melt-spun alloy of the same average nominal composition produced traditionally. Additionally, the mechanical and the thermal properties in this composite are inherited from the amorphous state of alloys that are precursors for two-component melt spinning (TCMS) processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...