Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Photoacoustics ; 38: 100625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38974142

ABSTRACT

Here we present a computational and experimental fluid dynamics study for the characterization of the flow field within the gas chamber of a Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensor, at different flow rates at the inlet of the chamber. The transition from laminar to turbulent regime is ruled both by the inlet flow conditions and dimension of the gas chamber. The study shows how the distribution of the flow field in the chamber can influence the QEPAS sensor sensitivity, at different operating pressures. When turbulences and eddies are generated within the gas chamber, the efficiency of photoacoustic generation is significantly altered.

2.
Photoacoustics ; 35: 100577, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38149035

ABSTRACT

In this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure. The possibility to operate the LiNTF as a photoacoustic wave detector was demonstrated targeting a water vapor absorption line falling at 7181.14 cm-1 (1.39 µm). A noise equivalent concentration of 2 ppm was reached with a signal integration time of 20 s. These preliminary results open the path towards integrated photonic devices for gas sensing with LiNTF-based detectors on lithium niobate platforms.

3.
Photoacoustics ; 33: 100553, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021294

ABSTRACT

We present an optical sensor based on light-induced thermoelastic spectroscopy for the detection of hydrogen sulfide (H2S) in sulfur hexafluoride (SF6). The sensor incorporates a compact multi-pass cell measuring 6 cm × 4 cm × 4 cm and utilizes a quartz tuning fork (QTF) photodetector. A 1.58 µm near-infrared distributed feedback (DFB) laser with an optical power of 30 mW serves as the excitation source. The sensor achieved a minimum detection limit (MDL) of ∼300 ppb at an integration time of 300 ms, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 3.96 × 10-9 W·cm-1·Hz-1/2. By extending the integration time to 100 s, the MDL can be reduced to ∼25 ppb. The sensor exhibits a response time of ∼1 min for a gas flow rate of 70 sccm.

4.
Photoacoustics ; 31: 100518, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37325395

ABSTRACT

Here we report on a study of the non-radiative relaxation dynamic of 12CH4 and 13CH4 in wet nitrogen-based matrixes by using the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique. The dependence of the QEPAS signal on pressure at fixed matrix composition and on H2O concentration at fixed pressure was investigated. We demonstrated that QEPAS measurements can be used to retrieve both the effective relaxation rate in the matrix, and the V-T relaxation rate associated to collisions with nitrogen and water vapor. No significant differences in measured relaxation rates were observed between the two isotopologues.

5.
Photoacoustics ; 31: 100479, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37255964

ABSTRACT

In this work, a comparison between Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) and Beat Frequency-QEPAS (BF-QEPAS) techniques for environmental monitoring of pollutants is reported. A spectrophone composed of a T-shaped Quartz Tuning Fork (QTF) coupled with resonator tubes was employed as a detection module. An interband cascade laser has been used as an exciting source, allowing the targeting of two NO absorption features, located at 1900.07 cm-1 and 1900.52 cm-1, and a water vapor absorption feature, located at 1901.76 cm-1. Minimum detection limits of 90 ppb and 180 ppb were achieved with QEPAS and BF-QEPAS techniques, respectively, for NO detection. The capability to detect multiple components in the same gas mixture using BF-QEPAS was also demonstrated.

6.
Photoacoustics ; 29: 100448, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36654961

ABSTRACT

A gas sensor based on light-induced thermo-elastic spectroscopy (LITES) capable to detect methane (C1) and ethane (C2) in a wide concentration range, from percent down to part-per-billion (ppb), is here reported. A novel approach has been implemented, exploiting a compact sensor design that accommodates both a custom 9.8 kHz quartz tuning fork (QTF) used as photodetector and the gas sample in the same housing. The resulting optical pathlength was only 2.5 cm. An interband cascade laser (ICL) with emission wavelength of 3.345 µm was used to target absorption features of C1 and C2. The effects of high concentration analytes on sensor response were firstly investigated. C1 concentration varied from 1% to 10%, while C2 concentration varied from 0.1% to 1%. These ranges were selected to retrace the typical natural gas composition in a 1:10 nitrogen dilution. The LITES sensor was calibrated for both the gas species independently and returned nonlinear but monotonic responses for the two analytes. These univariate calibrations were used to retrieve the composition of C1-C2 binary mixtures with accuracy higher than 98%, without the need for further data analysis. Minimum detection limits of ∼650 ppb and ∼90 ppb were achieved at 10 s of integration time for C1 and C2, respectively, demonstrating the capability of the developed LITES sensor to operate with concentration ranges spanning over 6 orders of magnitude.

7.
Photoacoustics ; 28: 100401, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36105377

ABSTRACT

We report on a gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) able to detect multiple gas species for environmental monitoring applications, by exploiting a Vernier effect-based quantum cascade laser as the excitation source. The device emission spectrum consists of ten separated emission clusters covering the range from 2100 up to 2250 cm-1. Four clusters were selected to detect the absorption features of carbon monoxide (CO), nitrous oxide (N2O), carbon dioxide (CO2), and water vapor (H2O), respectively. The sensor was calibrated with certified concentrations of CO, N2O and CO2 in a wet nitrogen matrix. The H2O absorption feature was used to monitor the water vapor within the gas line during the calibration. Minimum detection limits of 6 ppb, 7 ppb, and 70 ppm were achieved for CO, N2O and CO2, respectively, at 100 ms of integration time. As proof of concept, the QEPAS sensor was tested by continuously sampling indoor laboratory air and monitoring the analytes concentrations.

8.
Anal Chim Acta ; 1202: 338894, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35341511

ABSTRACT

Multi-gas detection represents a suitable solution in many applications, such as environmental and atmospheric monitoring, chemical reaction and industrial process control, safety and security, oil&gas and biomedicine. Among optical techniques, Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) has been demonstrated to be a leading-edge technology for addressing multi-gas detection, thanks to the modularity, ruggedness, portability and real time operation of the QEPAS sensors. The detection module consists in a spectrophone, mounted in a vacuum-tight cell and detecting sound waves generated via photoacoustic excitation within the gas sample. As a result, the sound detection is wavelength-independent and the volume of the absorption cell is basically determined by the spectrophone dimensions, typically in the order of few cubic centimeters. In this review paper, the implementation of the QEPAS technique for multi-gas detection will be discussed for three main areas of applications: i) multi-gas trace sensing by exploiting non-interfering absorption features; ii) multi-gas detection dealing with overlapping absorption bands; iii) multi-gas detection in fluctuating backgrounds. The fundamental role of the analysis and statistical tools will be also discussed in detail in relation with the specific applications. This overview on QEPAS technique, highlighting merits and drawbacks, aims at providing ready-to-use guidelines for multi-gas detection in a wide range of applications and operating conditions.


Subject(s)
Photoacoustic Techniques , Quartz , Photoacoustic Techniques/methods , Quartz/chemistry , Spectrum Analysis/methods
9.
Photoacoustics ; 26: 100349, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35345809

ABSTRACT

A quartz enhanced photoacoustic spectroscopy (QEPAS) sensor capable to detect high concentrations of methane (C1) and ethane (C2) is here reported. The hydrocarbons fingerprint region around 3 µm was exploited using an interband cascade laser (ICL). A standard quartz tuning fork (QTF) coupled with two resonator tubes was used to detect the photoacoustic signal generated by the target molecules. Employing dedicated electronic boards to both control the laser source and collect the QTF signal, a shoe-box sized QEPAS sensor was realized. All the generated mixtures were downstream humidified to remove the influence of water vapor on the target gases. Several natural gas-like samples were generated and subsequently diluted 1:10 in N2. In the concentration ranges under investigation (1%-10% for C1 and 0.1%-1% for C2), both linear and nonlinear responses of the sensor were measured and signal variations due to matrix effects were observed. Partial least squares regression (PLSR) was employed as a multivariate statistical tool to accurately determine the concentrations of C1 and C2 in the mixtures, compensating the matrix relaxation effects. The achieved results extend the range of C1 and C2 concentrations detectable by QEPAS technique up to the percent scale.

10.
Photoacoustics ; 21: 100219, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33437615

ABSTRACT

In this work, we report on a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for hydrogen sulfide (H2S) detection, exploiting a liquid-nitrogen-cooled THz quantum cascade laser (QCL) operating in pulsed mode. The spectrophone was designed to accommodate a THz QCL beam and consisted of a custom quartz tuning fork with a large prong spacing, coupled with acoustic resonator tubes. The targeted rotational transition falls at 2.87 THz (95.626 cm-1), with a line-strength of 5.53 ∙ 10-20 cm/mol. A THz QCL peak power of 150 mW was measured at a heat sink temperature of 81 K, pulse width of 1 µs and repetition rate of 15.8 kHz. A QEPAS record sensitivity for H2S detection in the THz range of 360 part-per-billion in volume was achieved at a gas pressure of 60 Torr and 10 s integration time.

11.
Anal Chem ; 92(20): 13922-13929, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32962343

ABSTRACT

An optical sensor for highly sensitive detection of carbon monoxide (CO) in sulfur hexafluoride (SF6) was demonstrated by using the quartz-enhanced photoacoustic spectroscopy technique. A spectrophone composed of a custom 8 kHz T-shaped quartz tuning fork with grooved prongs and a pair of resonator tubes, to amplify the laser-induced acoustic waves, was designed aiming to maximize the CO photoacoustic response in SF6. A theoretical analysis and an experimental investigation of the influence of SF6 gas matrix on spectrophone resonance properties for CO detection have been provided, and the performances were compared with the standard air matrix. A mid-infrared quantum cascade laser with a central wavelength at 4.61 µm, resonant with the fundamental band of CO, and an optical power of 20 mW was employed as the light excitation source. A minimum detection limit of 10 ppb at 10 s of integration time was achieved, and a sensor response time of ∼3 min was measured.

12.
Opt Express ; 28(13): 19074-19084, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672192

ABSTRACT

We report on a study of light-induced thermo-elastic effects occurring in quartz tuning forks (QTFs) when exploited as near-infrared light detectors in a tunable diode laser absorption spectroscopy sensor setup. Our analysis showed that when the residual laser beam transmitted by the absorption cell is focused on the QTF surface area where the maximum strain field occurs, the QTF signal-to-noise ratio (SNR) is proportional to the strain itself and to the QTF accumulation time. The SNR was also evaluated when the pressure surrounding the QTF was lowered from 700 Torr to 5 Torr, resulting in an enhancement factor of ∽4 at the lowest pressure. At 5 torr, the QTF employed as light detector showed an SNR ∽6.5 times higher than that obtained by using a commercially available amplified photodetector.

13.
Anal Chem ; 92(16): 11035-11043, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32674566

ABSTRACT

We report on a statistical tool based on partial least-squares regression (PLSR) able to retrieve single-component concentrations in a multiple-gas mixture characterized by spectrally overlapping absorption features. Absorption spectra of mixtures of CO-N2O and mixtures of C2H2-CH4-N2O, both diluted in N2, were detected in the mid-IR range by exploiting quartz-enhanced photoacoustic spectroscopy (QEPAS) and using two quantum cascade lasers as light sources. Single-gas reference spectra of each target molecule were acquired and used as PLSR-based algorithm training data set. The concentration range explored in the analysis varies from a few parts-per-million (ppm) to thousands of ppm. Within this concentration range, the influence of the gas matrix on nonradiative relaxation processes can be neglected. Exploiting the ability of PLSR to deal with correlated data, these spectra were used to generate new simulated spectra, i.e., linear combinations of the reference ones. A Gaussian noise distribution was added to the created data set, simulating the real QEPAS signal fluctuations around the peak value. Compared with standard multilinear regression, PLSR predicted gas concentrations with a calibration error up to 5 times better, even with absorption features with spectral overlap greater than 97%.

14.
Photoacoustics ; 17: 100155, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31956485

ABSTRACT

We report on a comparison between piezoelectric and interferometric readouts of vibrations in quartz tuning forks (QTFs) when acting as sound wave transducers in a quartz-enhanced photoacoustic setup (QEPAS) for trace gas detection. A theoretical model relating the prong vibration amplitude with the QTF prong sizes and electrical resistance is proposed. To compare interferometric and piezoelectric readouts, two QTFs have been selected; a tuning fork with rectangular-shape of the prongs, having a resonance frequency of 3.4 kHz and a quality-factor of 4,000, and a QTF with prong having a T-shape characterized by a resonance frequency of 12.4 kHz with a quality-factor of 15,000. Comparison between the interferometric and piezoelectric readouts were performed by using both QTFs in a QEPAS sensor setup for water vapor detection. We demonstrated that the QTF geometry can be properly designed to enhance the signal from a specific readout mode.

15.
Photoacoustics ; 17: 100159, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31956489

ABSTRACT

Here we report on the broadband detection of nitrous oxide (N2O) and methane (CH4) mixtures in dry nitrogen by using a quartz-enhanced photoacoustic (QEPAS) sensor exploiting an array of 32 distributed-feedback quantum cascade lasers, within a spectral emission range of 1190-1340 cm-1 as the excitation source. Methane detection down to a minimum detection limit of 200 ppb at 10 s lock-in integration time was achieved. The sensor demonstrated a linear response in the range of 200-1000 ppm. Three different mixtures of N2O and CH4 in nitrogen at atmospheric pressure have been analyzed. The capability of the developed QEPAS sensor to selectively determine the N2O and CH4 concentrations was demonstrated, in spite of significant overlap in their respective absorption spectra in the investigated spectral range.

SELECTION OF CITATIONS
SEARCH DETAIL
...