Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1035089, 2022.
Article in English | MEDLINE | ID: mdl-36466265

ABSTRACT

Successful plant establishment in a particular environment depends on the root architecture of the seedlings and the extent of edaphic resource utilization. However, diverse habitats often pose a predicament on the suitability of the fundamental root structure of a species that evolved over a long period. We hypothesized that the plasticity in the genetically controlled root architecture in variable habitats provides an adaptive advantage to worldwide-distributed wild radish (Raphanus raphanistrum, Rr) over its close relative (R. pugioniformis, Rp) that remained endemic to the East Mediterranean region. To test the hypothesis, we performed a reciprocal comparative analysis between the two species, growing in a common garden experiment on their native soils (Hamra/Sandy for Rr, Terra Rossa for Rp) and complementary controlled experiments mimicking the major soil compositions. Additionally, we analyzed the root growth kinetics via semi-automated digital profiling and compared the architecture between Rr and Rp. In both experiments, the primary roots of Rr were significantly longer, developed fewer lateral roots, and showed slower growth kinetics than Rp. Multivariate analyses of seven significant root architecture variables revealed that Rr could successfully adapt to different surrogate growth conditions by only modulating their main root length and number of lateral roots. In contrast, Rp needs to modify several other root parameters, which are very resource-intensive, to grow on non-native soil. Altogether the findings suggest an evo-devo adaptive advantage for Rr as it can potentially establish in various habitats with the minimal tweak of key root parameters, hence allocating resources for other developmental requirements.

2.
Evol Appl ; 11(10): 1964-1974, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30459841

ABSTRACT

Approximately 200 weed species are responsible for more than 90% of crop losses and these comprise less than one percent of all named plant species, suggesting that there are only a few evolutionary routes that lead to weediness. Agricultural weeds can evolve along three main paths: they can be escaped crops, wild species, or crop-wild hybrids. We tested these three hypotheses in weedy radish, a weed of small grains and an emerging model for investigating the evolution of agricultural weeds, using 21 CAPS and SSR markers scored on 338 individuals from 34 populations representing all major species and sub-species in the radish genus Raphanus. To test for adaptation of the weeds to the agricultural environment, we estimated genetic differentiation in flowering time in a series of common garden experiments with over 2,400 individuals from 43 populations (all but one of the genotyped populations plus 10 additional populations). Our findings suggest that the agricultural weed radish R. r. raphanistrum is most genetically similar to native populations of R. r. raphanistrum and is likely not a feral crop or crop hybrid. We also show that weedy radish flowers more rapidly than any other Raphanus population or cultivar, which is consistent with rapid adaptation to the frequent and severe disturbance that characterizes agricultural fields.

3.
Mol Phylogenet Evol ; 119: 182-195, 2018 02.
Article in English | MEDLINE | ID: mdl-29162549

ABSTRACT

Understanding transcontinental biogeographic patterns has been one of the main foci of the field of biogeography. While multiple explanations for transcontinental disjunctions have been proposed, little is still known about the relative importance of intrinsic and extrinsic traits for the diversification dynamics of disjunct taxa. Here, we study the evolutionary history of the genus Picris L. (Compositae), a great model for investigating the diversification dynamics of transoceanic bipolar disjunct organisms. Ancestral state reconstructions indicate that the most recent common ancestor (MRCA) of Picris was a semelparous and heterocarpic herb that lived in unpredictable environments of North Africa and West Asia. Diversification analyses suggest a significant shift in speciation ca. 1 million years ago, likely associated with the onset of the mid-Pleistocene revolution. Longevity characters are correlated with the evolution of particular fruit types and with environmental conditions. Heterocarpic species are mostly semelparous herbs strongly linked with unpredictable habitats, while homocarpic taxa are mostly iteroparous plants occurring in predictable environments. Binary-state speciation and extinction analyses suggest that homocarpy, iteroparity, and habitats predictability accelerate diversification. Although the combination of homocarpy and iteroparity evolved in several lineages, only members of the P. hieracioides group were able to colonise Eurasia and expand to Australia by transoceanic dispersal. Those findings indicate that large-scale colonisation events depend on a complex interplay of intrinsic and extrinsic factors.


Subject(s)
Asteraceae/classification , Biodiversity , Climate , Africa, Northern , Asia , Australia , Bayes Theorem , Models, Biological , Phenotype , Phylogeny , Phylogeography , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...