Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 67(13)2022 06 24.
Article in English | MEDLINE | ID: mdl-35545081

ABSTRACT

Immobilization masks are used to prevent patient movement during head and neck (H&N) radiotherapy. Motion restriction is beneficial both during treatment, as well as in the pre-treatment simulation phase, where magnetic resonance imaging (MRI) is often used for target definition. However, the shape and size of the immobilization masks hinder the use of regular, close-fitting MRI receive arrays. In this work, we developed a mask-compatible 8-channel H&N array that consists of a single-channel baseplate, on which the mask can be secured, and a flexible 7-channel anterior element that follows the shape of the mask. The latter uses high impedance coils to achieve its flexibility and radiolucency. A fully-functional prototype was manufactured, its radiolucency was characterized, and the gain in imaging performance with respect to current clinical setups was quantified. Dosimetry measurements showed an overall dose change of -0.3%. Small, local deviations were up to -2.7% but had no clinically significant impact on a full treatment plan, as gamma pass rates (3%/3 mm) only slightly reduced from 97.9% to 97.6% (clinical acceptance criterion: ≥95%). The proposed H&N array improved the imaging performance with respect to three clinical setups. The H&N array more than doubled (+123%) and tripled (+246%) the signal-to-noise ratio with respect to the clinical MRI-simulation and MR-linac setups, respectively.G-factors were also lower with the proposed H&N array. The improved imaging performance resulted in a clearly visible signal-to-noise ratio improvement of clinically used TSE and DWI acquisitions. In conclusion, the 8-channel H&N array improves the imaging performance of MRI-simulation and MR-linac acquisitions, while dosimetry suggests that no clinically significant dose changes are induced.


Subject(s)
Particle Accelerators , Radiotherapy, Image-Guided , Head , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Signal-To-Noise Ratio
2.
Phys Med Biol ; 66(20)2021 10 11.
Article in English | MEDLINE | ID: mdl-34571496

ABSTRACT

The simultaneous use of positron emission tomography (PET) and magnetic resonance imaging (MRI) requires attenuation correction (AC) of photon-attenuating objects, such as MRI receive arrays. However, AC of flexible, on-body arrays is complex and therefore often omitted. This can lead to significant, spatially varying PET signal losses when conventional MRI receive arrays are used. Only few dedicated, photon transparent PET/MRI arrays exist, none of which are compatible with our new, wide-bore 1.5 T PET/MRI system dedicated to radiotherapy planning. In this work, we investigated the use of 1.5 T MR-linac (MRL) receive arrays for PET/MRI, as these were designed to have a low photon attenuation for accurate dose delivery and can be connected to the new 1.5 T PET/MRI scanner. Three arrays were assessed: an 8-channel clinically-used MRL array, a 32-channel prototype MRL array, and a conventional MRI receive array. We experimentally determined, simulated, and compared the impact of these arrays on the PET sensitivity and image reconstructions. Furthermore, MRI performance was compared. Overall coil-induced PET sensitivity losses were reduced from 8.5% (conventional) to 1.7% (clinical MRL) and 0.7% (prototype MRL). Phantom measurements showed local signal errors of up to 32.7% (conventional) versus 3.6% (clinical MRL) and 3.5% (prototype MRL). Simulations with data of eight cancer patients showed average signal losses were reduced from 14.3% (conventional) to 1.2% (clinical MRL) and 1.0% (prototype MRL). MRI data showed that the signal-to-noise ratio of the MRL arrays was slightly lower at depth (110 versus 135). The parallel imaging performance of the conventional and prototype MRL arrays was similar, while the clinical MRL array's performance was lower. In conclusion, MRL arrays reducein-vivoPET signal losses >10×, which decreases, or eliminates, the need for coil AC on a new 1.5 T PET/MRI system. The prototype MRL array allows flexible coil positioning without compromising PET or MRI performance. One limitation of MRL arrays is their limited radiolucent PET window (field of view) in the craniocaudal direction.


Subject(s)
Positron-Emission Tomography , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Particle Accelerators , Phantoms, Imaging , Positron-Emission Tomography/methods
3.
Phys Med Biol ; 65(21): 215008, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32698168

ABSTRACT

High impedance coils (HICs) are suitable as a building block of receive arrays for MRI-guided radiotherapy (MRIgRT) as HICs do not require radiation-attenuating capacitors and dense support materials. Recently, we proved the feasibility of using HICs to create a radiation transparent (i.e. radiolucent) window. In this work, we constructed a fully functional 32-channel array based on this design. The anterior element is flexible and follows the shape of the subject, while the posterior element is rigid to support the subject. Both elements feature a 2 × 8 channel layout. Here, we discuss the construction process and characterize the array's radiolucency and imaging performance. The dosimetric impact of the array was quantified by assessing the surface dose increase and attenuation of a single beam. The imaging performance of the prototype was compared to the clinical array in terms of visual appearance, signal-to-noise ratio (SNR), and acceleration performance, both in phantom and in-vivo measurements. Dosimetry measurements showed that on-body placement changed the anterior and posterior surface dose by +3% and -16% of the dose maximum. Attenuation under the anterior support materials and conductors was 0.3% and ≤1.5%, respectively. Phantom and in-vivo imaging with this array demonstrated an improvement of the SNR at the surface and the image quality in general. Simultaneous irradiation did not affect the SNR. G-factors were reduced considerably and clinically used sequences could be accelerated by up to 45%, which would greatly reduce pre-beam imaging times. Finally, the maximally achievable temporal resolution of abdominal 3D cine imaging was improved to 1.1 s, which was > 5 × faster than could be achieved with the clinical array. This constitutes a big step towards the ability to resolve respiratory motion in 3D. In conclusion, the proposed 32-channel array is compatible with MRIgRT and can significantly reduce scan times and/or improve the image quality of all on-line scans.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Particle Accelerators , Equipment Design , Humans , Phantoms, Imaging , Radiometry , Signal-To-Noise Ratio
4.
Phys Med Biol ; 64(18): 185004, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31370043

ABSTRACT

The lack of radiation-attenuating tuning capacitors in high impedance coils (HICs) make HICs an interesting building block of receive arrays for MRI-guided radiotherapy (MRIgRT). Additionally, their flexibility and limited channel coupling allow for low-density support materials, which are likely to be more radiation transparent (radiolucent). In this work, we introduce the use of HICs in receive arrays for MRIgRT treatments. We discuss the design and show the dosimetric feasibility of a HIC receive array that has a high channel count and aims to improve the imaging performance of the 1.5 T MR-linac. Our on-body design comprises an anterior and posterior element, which each feature a [Formula: see text] channel layout (32 channels total). The anterior element is flexible, while the posterior element is rigid to support the patient. Mockups consisting of support materials and conductors were built, irradiated, and optimized to minimize impact on the surface dose (7% of the dose maximum) and dose at depth ([Formula: see text]0.8% under a single conductor and [Formula: see text]1.4% under a conductor crossing). Anatomical motion and the use of multiple beam angles will ensure that these slight dose changes at depth are clinically insignificant. Subsequently, several functional, single-channel HIC imaging prototypes and a 5-channel array were built to assess the performance in terms of signal-to-noise ratio (SNR). The performance was compared to the clinical MR-linac array and showed that the 5-channel imaging prototype outperformed the clinical array in terms of SNR and channel coupling. Imaging performance was not affected by the radiation beam. In conclusion, the use of HICs allowed for the design of our flexible, on-body receive array for MRIgRT. The design was shown to be dosimetrically feasible and improved the SNR. Future research with a full array will need to show the gain in parallel imaging performance and thus acceleration.


Subject(s)
Equipment Design , Magnetic Resonance Imaging/instrumentation , Mechanical Phenomena , Particle Accelerators/instrumentation , Electric Impedance , Feasibility Studies , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
5.
Phys Med Biol ; 63(2): 025014, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29260729

ABSTRACT

The purpose of this study is to investigate the attenuation characteristics of a novel radiofrequency (RF) coil, which is the first coil that is solely dedicated to MR guided radiotherapy with a 1.5 T MR-linac. Additionally, we investigated the impact of the treatment beam on the MRI performance of this RF coil. First, the attenuation characteristics of the RF coil were characterized. Second, we investigated the impact of the treatment beam on the MRI performance of the RF coil. We additionally demonstrated the ability of the anterior coil to attenuate returning electrons and thereby reducing the dose to the skin at the distal side of the treatment beam. Intensity modulated radiation therapy simulation of a clinically viable treatment plan for spinal bone metastasis shows a decrease of the dose to the planned tumor volume of 1.8% as a result of the MR coil around the patient. Ionization chamber and film measurements show that the anterior and posterior coil attenuate the beam homogeneously by 0.4% and 2.2%, respectively. The impact of the radiation resulted in a slight drop of the time-course signal-to-noise ratio and was dependent on imaging parameters. However, we could not observe any image artifacts resulting from this irradiation in any situation. In conclusion, the investigated MR-coil can be utilized for treatments with the 1.5 T-linac system. However, there is still room for improvement when considering both the dosimetric and imaging performance of the coil.


Subject(s)
Bone Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiotherapy, Image-Guided/methods , Spinal Neoplasms/radiotherapy , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Humans , Signal-To-Noise Ratio , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/pathology
6.
Anal Chem ; 88(8): 4525-32, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27018236

ABSTRACT

Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.


Subject(s)
Antibodies/blood , Luminescent Proteins/analysis , Luminescent Proteins/chemistry , Smartphone , Fluorescence Resonance Energy Transfer , Humans , Luminescent Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...