Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Astrophys J Suppl Ser ; 231(2)2017 Aug.
Article in English | MEDLINE | ID: mdl-28966408

ABSTRACT

We perform a comprehensive analysis of the planetary nebula (PN) NGC 6781 to investigate the physical conditions of each of its ionized, atomic, and molecular gas and dust components and the object's evolution, based on panchromatic observational data ranging from UV to radio. Empirical nebular elemental abundances, compared with theoretical predictions via nucleosynthesis models of asymptotic giant branch (AGB) stars, indicate that the progenitor is a solar-metallicity, 2.25-3.0 M⊙ initial-mass star. We derive the best-fit distance of 0.46 kpc by fitting the stellar luminosity (as a function of the distance and effective temperature of the central star) with the adopted post-AGB evolutionary tracks. Our excitation energy diagram analysis indicates high-excitation temperatures in the photodissociation region (PDR) beyond the ionized part of the nebula, suggesting extra heating by shock interactions between the slow AGB wind and the fast PN wind. Through iterative fitting using the Cloudy code with empirically derived constraints, we find the best-fit dusty photoionization model of the object that would inclusively reproduce all of the adopted panchromatic observational data. The estimated total gas mass (0.41 M⊙) corresponds to the mass ejected during the last AGB thermal pulse event predicted for a 2.5 M⊙ initial-mass star. A significant fraction of the total mass (about 70%) is found to exist in the PDR, demonstrating the critical importance of the PDR in PNe that are generally recognized as the hallmark of ionized/H+ regions.

3.
Nature ; 484(7393): 220-2, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22498626

ABSTRACT

An intermediate-mass star ends its life by ejecting the bulk of its envelope in a slow, dense wind. Stellar pulsations are thought to elevate gas to an altitude cool enough for the condensation of dust, which is then accelerated by radiation pressure, entraining the gas and driving the wind. Explaining the amount of mass loss, however, has been a problem because of the difficulty of observing tenuous gas and dust only tens of milliarcseconds from the star. For this reason, there is no consensus on the way sufficient momentum is transferred from the light from the star to the outflow. Here we report spatially resolved, multiwavelength observations of circumstellar dust shells of three stars on the asymptotic giant branch of the Hertzsprung-Russell diagram. When imaged in scattered light, dust shells were found at remarkably small radii (less than about two stellar radii) and with unexpectedly large grains (about 300 nanometres in radius). This proximity to the photosphere argues for dust species that are transparent to the light from the star and, therefore, resistant to sublimation by the intense radiation field. Although transparency usually implies insufficient radiative pressure to drive a wind, the radiation field can accelerate these large grains through photon scattering rather than absorption--a plausible mass loss mechanism for lower-amplitude pulsating stars.

4.
Science ; 313(5784): 196-200, 2006 Jul 14.
Article in English | MEDLINE | ID: mdl-16763110

ABSTRACT

We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe.

5.
Science ; 308(5719): 231-3, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15821085

ABSTRACT

After a hot white dwarf ceases its nuclear burning, its helium may briefly and explosively reignite. This causes the star to evolve back into a cool giant, whereupon it experiences renewed mass ejection before reheating. A reignition event of this kind was observed in 1996 in V4334 Sgr (Sakurai's object). Its temperature decrease was 100 times the predicted rate. To understand its unexpectedly fast evolution, we have developed a model in which convective mixing is strongly suppressed under the influence of flash burning. The model predicts equally rapid reheating of the star. Radio emission from freshly ionized matter now shows that this reheating has begun. Such events may be an important source of carbon and carbonaceous dust in the Galaxy.

SELECTION OF CITATIONS
SEARCH DETAIL
...