Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(8): 085501, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167343

ABSTRACT

Large-scale simulations using interatomic potentials provide deep insight into the processes occurring in solids subject to external perturbations. The atomistic description of laser-induced ultrafast nonthermal phenomena, however, constitutes a particularly difficult case and has so far not been possible on experimentally accessible length scales and timescales because of two main reasons: (i) ab initio simulations are restricted to a very small number of atoms and ultrashort times and (ii) simulations relying on electronic temperature- (T_{e}) dependent interatomic potentials do not reach the necessary ab initio accuracy. Here we develop a self-learning method for constructing T_{e}-dependent interatomic potentials which permit ultralarge-scale atomistic simulations of systems suddenly brought to extreme nonthermal states with density-functional theory (DFT) accuracy. The method always finds the global minimum in the parameter space. We derive a highly accurate analytical T_{e}-dependent interatomic potential Φ(T_{e}) for silicon that yields a remarkably good description of laser-excited and -unexcited Si bulk and Si films. Using Φ(T_{e}) we simulate the laser excitation of Si nanoparticles and find strong damping of their breathing modes due to nonthermal melting.

2.
Phys Rev Lett ; 116(15): 153901, 2016 04 15.
Article in English | MEDLINE | ID: mdl-27127968

ABSTRACT

By exciting electron-hole pairs that survive for picoseconds strong femtosecond lasers may transiently influence the bonding properties of semiconductors, causing structure changes, in particular, ultrafast melting. In order to determine the energy flow during this process in silicon we performed ab initio molecular dynamics simulations and an analysis in quasimomentum space. We found that energy flows very differently as a function of increasing excitation density, namely, mainly through long wavelength, L-point, or X-point lattice vibrations, respectively.

3.
Struct Dyn ; 2(5): 054101, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26798822

ABSTRACT

Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

4.
Nanotechnology ; 25(14): 145701, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24622335

ABSTRACT

A femtosecond-laser pulse constitutes an unconventional tool to manipulate solids and nanostructures, for it may excite materials in a transient nonthermal state with hot electrons and atoms close to their initial temperature. Here we study the Young's modulus and the electronic band gap of a (5, 0) zigzag boron-nitride nanotube (BNNT) after an ultrashort laser pulse excitation using density functional theory, where the effect of a femtosecond-laser pulse is modelled by an instantaneous rise of the electronic temperature. At room temperature, before the laser pulse, we obtain a Young's modulus of 763 GPa, which decreases with increasing electronic temperature. For the band gap we find a value of 2.26 eV at room temperature, which increases with increasing electronic temperature and equals 3.28 eV at 28 420 K. We note that conventional means decrease the band gap of BNNTs and that a femtosecond-laser pulse is, to the best of our knowledge, the first tool that increases it. For comparison, we also present results for a (9, 0) zigzag BNNT.

5.
Adv Mater ; 25(39): 5605-8, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-23925994

ABSTRACT

Microscopic processes leading to ultrafast laser-induced melting of silicon are investigated by large-scale ab initio molecular dynamics simulations. Before becoming a liquid, the atoms are shown to be fractionally diffusive, which is a property that has so far been observed in crowded fluids consisting of large molecules. Here, it is found to occur in an elemental semiconductor.

6.
Phys Rev Lett ; 110(6): 067402, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432307

ABSTRACT

We investigate the influence of carrier cooling dynamics in TiO(2) on the excited-state potential energy surface along the A(1g) optical phonon coordinate after above band-gap excitation using ultrashort ultraviolet pulses. The large amplitude coherent oscillation observed in a pump-probe transient reflectivity measurement shows a phase shift of -0.2π with respect to a purely instantaneous displacive excitation. The dynamic evolution of the potential energy surface minimum of the coherent phonon coordinate is explored using accurate density functional theory calculations, which confirm a shift of the potential energy surface minimum upon resonant laser excitation and reveal a significant positive contribution to the displacive force due to the cooling of the excited hot electron-hole plasma. We show that this noninstantaneous effect can quantitatively explain the experimentally observed phase using reasonable assumptions for the parameters characterizing the excited carriers. Our work demonstrates that the fast equilibration dynamics of laser-excited nonequilibrium carrier populations can have a pronounced effect on the initial structural response of crystalline solids.

7.
8.
Phys Rev Lett ; 101(13): 135701, 2008 Sep 26.
Article in English | MEDLINE | ID: mdl-18851461

ABSTRACT

We compute the potential energy surface of femtosecond-laser-excited InSb along the directions in which the crystal becomes soft. Using dynamical simulations the time dependence of the atomic coordinates is obtained. We find that at high excitation densities the anharmonicity of the potential energy surface becomes significant after approximately 100 fs. On the basis of our results we explain recent time-resolved x-ray diffraction experiments. We point out that an alternative model for ultrafast melting [A. M. Lindenberg, Science 308, 392 (2005)] is inconsistent with our calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...