Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 38(1): 39-53, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21696420

ABSTRACT

AIMS: HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). METHODS: Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. RESULTS: In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. CONCLUSIONS: We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis.


Subject(s)
Adaptor Proteins, Signal Transducing/biosynthesis , Astrocytes/metabolism , Heat-Shock Proteins/biosynthesis , Neurodegenerative Diseases/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Apoptosis Regulatory Proteins , Blotting, Western , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Molecular Chaperones , Up-Regulation
2.
Neuropathol Appl Neurobiol ; 38(6): 548-58, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21916928

ABSTRACT

AIMS: A characteristic of polyglutamine diseases is the increased propensity of disease proteins to aggregate, which is thought to be a major contributing factor to the underlying neurodegeneration. Healthy cells contain mechanisms for handling protein damage, the protein quality control, which must be impaired or inefficient to permit proteotoxicity under pathological conditions. METHODS: We used a quantitative analysis of immunohistochemistry of the pons of eight patients with the polyglutamine disorder spinocerebellar ataxia type 3. We employed the anti-polyglutamine antibody 1C2, antibodies against p62 that is involved in delivering ubiquitinated protein aggregates to autophagosomes, antibodies against the chaperones HSPA1A and DNAJB1 and the proteasomal stress marker UBB⁺¹. RESULTS: The 1C2 antibody stained neuronal nuclear inclusions (NNIs), diffuse nuclear staining (DNS), granular cytoplasmic staining (GCS) and combinations, with reproducible distribution. P62 always co-localized with 1C2 in NNI. DNS and GCS co-stained with a lower frequency. UBB⁺¹ was present in a subset of neurones with NNI. A subset of UBB⁺¹-containing neurones displayed increased levels of HSPA1A, while DNAJB1 was sequestered into the NNI. CONCLUSION: Based on our results, we propose a model for the aggregation-associated pathology of spinocerebellar ataxia type 3: GCS and DNS aggregation likely represents early stages of pathology, which progresses towards formation of p62-positive NNI. A fraction of NNI exhibits UBB⁺¹ staining, implying proteasomal overload at a later stage. Subsequently, the stress-inducible HSPA1A is elevated while DNAJB1 is recruited into NNIs. This indicates that the stress response is only induced late when all endogenous protein quality control systems have failed.


Subject(s)
Machado-Joseph Disease/metabolism , Neurons/metabolism , Pons/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Aged, 80 and over , Female , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Immunohistochemistry , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Machado-Joseph Disease/pathology , Male , Middle Aged , Neurons/pathology , Pons/pathology , Sequestosome-1 Protein , Ubiquitin/metabolism
3.
Eur J Neurosci ; 32(5): 760-70, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20726892

ABSTRACT

In polyglutamine disorders, the length of the expanded CAG repeat shows a strong inverse correlation with the age at disease onset, yet up to 50% of the variation in age of onset is determined by other additional factors. Here, we investigated whether variations in the expression of heat shock proteins (HSP) are related to differences in the age of onset in patients with spinocerebellar ataxia (SCA)3. Hereto, we analysed the protein expression levels of HSPA1A (HSP70), HSPA8 (HSC70), DNAJB (HSP40) and HSPB1 (HSP27) in fibroblasts from patients and healthy controls. HSPB1 levels were significantly upregulated in fibroblasts from patients with SCA3, but without relation to age of onset. Exclusively for expression of DNAJB family members, a correlation was found with the age of onset independent of the length of the CAG repeat expansion. This indicates that DNAJB members might be contributors to the variation in age of onset and underlines the possible use of DNAJB proteins as therapeutic targets.


Subject(s)
HSP40 Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/biosynthesis , Machado-Joseph Disease/genetics , Adult , Age of Onset , Aged , Ataxin-3 , Cell Culture Techniques , Cell Line , Cell Line, Transformed , Female , Fibroblasts/metabolism , Humans , Male , Middle Aged , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/metabolism , Nuclear Proteins/biosynthesis , Nuclear Proteins/metabolism , Repressor Proteins/biosynthesis , Repressor Proteins/metabolism , Trinucleotide Repeat Expansion , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...