Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 602(7898): 617-622, 2022 02.
Article in English | MEDLINE | ID: mdl-35197621

ABSTRACT

Warming-induced global water cycle changes pose a significant challenge to global ecosystems and human society. However, quantifying historical water cycle change is difficult owing to a dearth of direct observations, particularly over the ocean, where 77% and 85% of global precipitation and evaporation occur, respectively1-3. Air-sea fluxes of freshwater imprint on ocean salinity such that mean salinity is lowest in the warmest and coldest parts of the ocean, and is highest at intermediate temperatures4. Here we track salinity trends in the warm, salty fraction of the ocean, and quantify the observed net poleward transport of freshwater in the Earth system from 1970 to 2014. Over this period, poleward freshwater transport from warm to cold ocean regions has occurred at a rate of 34-62 milli-sverdrups (mSv = 103 m3 s-1), a rate that is not replicated in the current generation of climate models (the Climate Model Intercomparison Project Phase 6 (CMIP6)). In CMIP6 models, surface freshwater flux intensification in warm ocean regions leads to an approximately equivalent change in ocean freshwater content, with little impact from ocean mixing and circulation. Should this partition of processes hold for the real world, the implication is that the historical surface flux amplification is weaker (0.3-4.6%) in CMIP6 compared with observations (3.0-7.4%). These results establish a historical constraint on poleward freshwater transport that will assist in addressing biases in climate models.


Subject(s)
Fresh Water , Oceans and Seas , Seawater , Water Cycle , Water Movements , Climate Models , Fresh Water/analysis , Global Warming/statistics & numerical data , Salinity , Seawater/analysis , Seawater/chemistry , Temperature , Time Factors
2.
Ann Rev Mar Sci ; 11: 271-305, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30230995

ABSTRACT

The water mass transformation (WMT) framework weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. In so doing, a WMT analysis renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry. In this review, we describe fundamentals of the WMT framework and illustrate its practical analysis capabilities. We show how it provides a robust methodology to characterize and quantify the impact of physical processes on buoyancy and other thermodynamic fields. We also detail how to extend WMT to insightful analysis of biogeochemical cycles.


Subject(s)
Models, Theoretical , Seawater/chemistry , Thermodynamics , Water Movements , Ecosystem , Oceans and Seas , Physical Phenomena , Salinity
3.
Philos Trans A Math Phys Eng Sci ; 375(2102)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28784714

ABSTRACT

The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

4.
Sci Rep ; 6: 38752, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934946

ABSTRACT

A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C-1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C-1 over 1950-2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C-1) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...