Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Appl Earth Obs Geoinf ; 128: 103763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605982

ABSTRACT

To identify areas of high biodiversity and prioritize conservation efforts, it is crucial to understand the drivers of species richness patterns and their scale dependence. While classified land cover products are commonly used to explain bird species richness, recent studies suggest that unclassified remote-sensed images can provide equally good or better results. In our study, we aimed to investigate whether unclassified multispectral data from Landsat 8 can replace image classification for bird diversity modeling. Moreover, we also tested the Spectral Variability Hypothesis. Using the Atlas of Breeding Birds in the Czech Republic 2014-2017, we modeled species richness at two spatial resolutions of approx. 131 km2 (large squares) and 8 km2 (small squares). As predictors of the richness, we assessed 1) classified land cover data (Corine Land Cover 2018 database), 2) spectral heterogeneity (computed in three ways) and landscape composition derived from unclassified remote-sensed reflectance and vegetation indices. Furthermore, we integrated information about the landscape types (expressed by the most prevalent land cover class) into models based on unclassified remote-sensed data to investigate whether the landscape type plays a role in explaining bird species richness. We found that unclassified remote-sensed data, particularly spectral heterogeneity metrics, were better predictors of bird species richness than classified land cover data. The best results were achieved by models that included interactions between the unclassified data and landscape types, indicating that relationships between bird diversity and spectral heterogeneity vary across landscape types. Our findings demonstrate that spectral heterogeneity derived from unclassified multispectral data is effective for assessing bird diversity across the Czech Republic. When explaining bird species richness, it is important to account for the type of landscape and carefully consider the significance of the chosen spatial scale.

2.
Biomacromolecules ; 21(12): 4857-4870, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33136375

ABSTRACT

Engineering artificial skin constructs is an ongoing challenge. An ideal material for hosting skin cells is still to be discovered. A promising candidate is low-cost cellulose, which is commonly fabricated in the form of a mesh and is applied as a wound dressing. Unfortunately, the structure and the topography of current cellulose meshes are not optimal for cell growth. To enhance the surface structure and the physicochemical properties of a commercially available mesh, we coated the mesh with wood-derived cellulose nanofibrils (CNFs). Three different types of mesh coatings are proposed in this study as a skin cell carrier: positively charged cationic cellulose nanofibrils (cCNFs), negatively charged anionic cellulose nanofibrils (aCNFs), and a combination of these two materials (c+aCNFs). These cell carriers were seeded with normal human dermal fibroblasts (NHDFs) or with human adipose-derived stem cells (ADSCs) to investigate cell adhesion, spreading, morphology, and proliferation. The negatively charged aCNF coating significantly improved the proliferation of both cell types. The positively charged cCNF coating significantly enhanced the adhesion of ADSCs only. The number of NHDFs was similar on the cCNF coatings and on the noncoated pristine cellulose mesh. However, the three-dimensional (3D) structure of the cCNF coating promoted cell survival. The c+aCNF construct proved to combine benefits from both types of CNFs, which means that the c+aCNF cell carrier is a promising candidate for further application in skin tissue engineering.


Subject(s)
Cellulose , Skin , Humans , Hydrogels , Stem Cells , Tissue Engineering
3.
Materials (Basel) ; 13(21)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113763

ABSTRACT

Bacterial nanocellulose has found applications in tissue engineering, in skin tissue repair, and in wound healing. Its large surface area enables the adsorption of various substances. Bacterial nanocellulose with adsorbed substances can serve as a substrate for drug-delivery of specific bioactive healing agents into wounds. In this study, we loaded a bacterial nanocellulose hydrogel with curcumin, i.e., an important anti-bacterial and healing agent, and its degradation products. These products were prepared by thermal decomposition of curcumin (DC) at a temperature of 180 °C (DC 180) or of 300 °C (DC 300). The main thermal decomposition products were tumerone, vanillin, and feruloylmethane. Curcumin and its degradation products were loaded into the bacterial nanocellulose by an autoclaving process. The increased temperature during autoclaving enhanced the solubility and the penetration of the agents into the nanocellulose. The aim of this study was to investigate the cytotoxicity and the antimicrobial activity of pure curcumin, its degradation products, and finally of bacterial nanocellulose loaded with these agents. In vitro tests performed on human dermal fibroblasts revealed that the degradation products of curcumin, i.e., DC 180 and DC 300, were more cytotoxic than pure curcumin. However, if DC 300 was loaded into nanocellulose, the cytotoxic effect was not as strong as in the case of DC 300 powder added into the culture medium. DC 300 was found to be the least soluble product in water, which probably resulted in the poor loading of this agent into the nanocellulose. Nanocellulose loaded with pure curcumin or DC 180 exhibited more antibacterial activity than pristine nanocellulose.

SELECTION OF CITATIONS
SEARCH DETAIL
...