Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 38(9): 1467-75, 1999 Mar 20.
Article in English | MEDLINE | ID: mdl-18305768

ABSTRACT

A compact, pulsed Nd:YAG laser-based instrument has been built to measure in situ absolute gas temperatures in large industrial furnaces by use of spontaneous anti-Stokes Raman scattering. The backscattering configuration was used to simplify the optics alignment and increase signal-to-noise ratios. Gated signal detection significantly reduced the background emission that is found in combustion environments. The anti-Stokes instead of the Stokes component was used to eliminate contributions to spectra from cold atmospheric nitrogen. The system was evaluated in a methane/air flame and in a bench-top oven, and the technique was found to be a reliable tool for nonintrusive absolute temperature measurements with relatively clean gas streams. A water-cooled insertion probe was integrated with the Raman system for measurement of the temperature profiles inside an industrial furnace. Gas temperatures near 1500-1800 K at atmospheric pressure in an industrial furnace were inferred by fitting calculated profiles to experimental spectra with a standard deviation of less than 1% for averaging times of approximately 200 s. The temperatures inferred from Raman spectra are in good agreement with data recorded with a thermocouple probe.

SELECTION OF CITATIONS
SEARCH DETAIL
...