Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 15(2): 936-42, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25555201

ABSTRACT

Enhanced photodecomposition of ethyl chloride (EC) adsorbed on SiO2/Si (100) supported silver nanoparticles (Ag NPs) under ultrahigh vacuum (UHV) conditions has been studied in order to assess the potential contribution of plasmonic effects. The cross section for photodecomposition of EC and overall photoyield were found to increase with increasing photon energy regardless of the plasmon resonant wavelength and with Ag coverage without any noticeable particle size effect. The influence of EC-Ag NPs separation distance on the rate of EC decomposition was studied in order to examine potential local electric field influence on the photodissociation process. Long (∼5 nm) photoactivity decay distance has been observed which excludes local surface plasmon dominance in the photodecomposition event. These findings suggest that the alignment of excited electron energy and adsorbate affinity levels is central for efficient photochemical reactions, whereas short-range electric field enhancement by plasmon excitation on top and at the immediate vicinity of silver nanoparticles does not have any measurable effect.


Subject(s)
Ethyl Chloride/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Photochemical Processes , Surface Plasmon Resonance
2.
Langmuir ; 28(49): 17118-23, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23145502

ABSTRACT

The growth mechanism of TiO(2) films and their morphology are reported using the reactive-layer-assisted deposition (RLAD) method under ultrahigh vacuum conditions. The oxide film formation involves Ti atom deposition on top of amorphous solid water (ASW) condensed on a SiO(2)/Si(100) support at 90 K. Subsequent annealing leads to the desorption of all nonreacted buffer molecules, resulting in the deposition of the titanium oxide film. Employing mass spectrometry and using D(2)O as a buffer, we detected the evolution of deuterium molecules during titanium atom deposition. A solid state sol-gel-like formation mechanism of titanium oxide is proposed on the basis these observations. The morphology of the oxide films is characterized by AFM as a rather uniform amorphous thin film at room temperature. Upon further annealing above 750 K, crystallization of the titanium oxide film has set in, coinciding with a dewetting process of the oxide layer, and information obtained from similar growth procedure on an amorphous carbon-covered TEM grid. It was shown that these films are rather insensitive to the underlying substrate at temperatures below 500 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...