Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 59(3): 354-64, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26267754

ABSTRACT

Melatonin is an important component of the vertebrates circadian system, synthetized from serotonin by the successive action of the arylalkylamine N-acetyltransferase (Aanat: serotonin→N-acetylserotonin) and acetylserotonin-O-methyltransferase (Asmt: N-acetylserotonin→melatonin). Aanat is responsible for the daily rhythm in melatonin production. Teleost fish are unique because they express two Aanat genes, aanat1 and aanat2, mainly expressed in the retina and pineal gland, respectively. In silico analysis indicated that the teleost-specific whole-genome duplication generated Aanat1 duplicates (aanat1a and aanat1b); some fish express both of them, while others express either one of the isoforms. Here, we bring the first information on the structure, function, and distribution of Aanat1a and Aanat1b in a teleost, the sea bass Dicentrarchus labrax. Aanat1a and Aanat1b displayed a wide and distinct distribution in the nervous system and peripheral tissues, while Aanat2 appeared as a pineal enzyme. Co-expression of Aanats with asmt was found in the pineal gland and the three retinal nuclear layers. Enzyme kinetics indicated subtle differences in the affinity and catalytic efficiency of Aanat1a and Aanat1b for indolethylamines and phenylethylamines, respectively. Our data are consistent with the idea that Aanat2 is a pineal enzyme involved in melatonin production, while Aanat1 enzymes have a broader range of functions including melatonin synthesis in the retina, and catabolism of serotonin and dopamine in the retina and other tissues. The data are discussed in light of the recently uncovered roles of N-acetylserotonin and N-acetyldopamine as antioxidants, neuroprotectants, and modulators of cell proliferation and enzyme activities.


Subject(s)
Arylalkylamine N-Acetyltransferase/metabolism , Bass/metabolism , Animals , Dopamine/analogs & derivatives , Dopamine/metabolism , Serotonin/analogs & derivatives , Serotonin/metabolism
2.
Mar Drugs ; 9(5): 906-921, 2011.
Article in English | MEDLINE | ID: mdl-21673898

ABSTRACT

Arylalkylamine N-acetyltransferase (AANAT) catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to arylalkylamines, including indolethylamines and phenylethylamines. Multiple aanats are present in teleost fish as a result of whole genome and gene duplications. Fish aanat1a and aanat2 paralogs display different patterns of tissue expression and encode proteins with different substrate preference: AANAT1a is expressed in the retina, and acetylates both indolethylamines and phenylethylamines; while AANAT2 is expressed in the pineal gland, and preferentially acetylates indolethylamines. The two enzymes are therefore thought to serve different roles. Here, the molecular changes that led to their specialization were studied by investigating the structure-function relationships of AANATs in the gilthead seabream (sb, Sperus aurata). Acetylation activity of reciprocal mutated enzymes pointed to specific residues that contribute to substrate specificity of the enzymes. Inhibition tests followed by complementary analyses of the predicted three-dimensional models of the enzymes, suggested that both phenylethylamines and indolethylamines bind to the catalytic pocket of both enzymes. These results suggest that substrate selectivity of AANAT1a and AANAT2 is determined by the positioning of the substrate within the catalytic pocket, and its accessibility to catalysis. This illustrates the evolutionary process by which enzymes encoded by duplicated genes acquire different activities and play different biological roles.


Subject(s)
Arylalkylamine N-Acetyltransferase/genetics , Evolution, Molecular , Fishes/genetics , Acetylation , Animals , Arylalkylamine N-Acetyltransferase/chemistry , Arylalkylamine N-Acetyltransferase/metabolism , Fishes/metabolism , Kinetics , Mutation
3.
Brain Res ; 1073-1074: 220-8, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16427617

ABSTRACT

Serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase, AANAT) is the key enzyme in the generation of melatonin rhythms in the pineal gland and retinal photoreceptors. Rhythmic AANAT activity drives rhythmic melatonin production in these tissues. Two AANATs, AANAT1 and AANAT2, are present in teleost fish species. Different spatial expression patterns, enzyme kinetics and substrate preferences suggest that they may have different functions. Enzyme activity assays revealed that recombinant seabream and zebrafish AANAT1s, but not AANAT2s, acetylate dopamine with kinetic characteristics that are similar to those for tryptamine acetylation. High performance liquid chromatography analysis of seabream retinal extracts indicated the presence of N-acetyldopamine. Time-of-day analysis of retinal AANAT activity and concentration of melatonin, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and N-acetyldopamine revealed a daily pattern of retinal melatonin and N-acetyldopamine production that are correlated with retinal AANAT1 activity. In situ hybridization analysis of seabream retinal sections indicated that tyrosine hydroxylase is expressed in the inner nuclear layer (INL) and that AANAT1 is expressed in the outer nuclear layer (ONL) and INL. Together, these observations point to the possibility that dopamine is acetylated by retinal AANAT1 in the INL. Such novel activity of AANAT1 may reflect an important function in the circadian physiology of the retina.


Subject(s)
Arylalkylamine N-Acetyltransferase/physiology , Dopamine/metabolism , Retina/enzymology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Analysis of Variance , Animals , Chromatography, High Pressure Liquid/methods , Cloning, Molecular/methods , Colorimetry/methods , Electrochemistry/methods , Gene Expression/physiology , In Situ Hybridization/methods , Melatonin/metabolism , Recombinant Proteins , Retina/anatomy & histology , Sea Bream , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
4.
Gen Comp Endocrinol ; 138(2): 139-47, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15302263

ABSTRACT

Serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase, AANAT) is the key enzyme in the biosynthesis of melatonin in the pineal gland and retinal photoreceptors. Rhythmic AANAT activity drives rhythmic melatonin production in these tissues. The presence of two AANATs, AANAT1 and AANAT2, has been previously demonstrated in three fresh water teleosts. This duality, the result of early gene duplication, is unique to teleost species. In this study, the cDNAs encoding for AANAT1 and AANAT2 were cloned from a marine fish, the gilthead seabream (sb, Sparus aurata). Northern blot hybridization analysis indicates that sbAANAT1 and sbAANAT2 are exclusively expressed in the retina and pineal gland, respectively. Bacterially expressed recombinant sbAANATs exhibit differential enzyme kinetics. Recombinant retinal sbAANAT1 has relatively high substrate affinity and low activity rate; it is inhibited by high substrate and product concentrations. In contrast, recombinant pineal sbAANAT2 exhibits low substrate affinity and high activity rate and is not inhibited by substrates or products. The two recombinant enzymes also exhibit differential substrate preference. Retinal sbAANAT1 acetylates a range of arylalkylamines while pineal sbAANAT2 preferentially acetylates indoleethylamines, especially serotonin. The different spatial expression patterns, enzyme kinetics, and substrate preferences of the two sbAANATs support the hypothesis that, as a consequence of gene duplication, teleosts have acquired two AANATs with different functions. Pineal AANAT2 specializes in the production of large amounts of melatonin that is released into the circulation and exerts an endocrine role. Retinal AANAT1, on the other hand, is involved in producing low levels of melatonin that execute a paracrine function. In addition, retinal AANAT1 may carry out an as yet unknown function that involves acetylation of arylalkylamines other than serotonin.


Subject(s)
Arylalkylamine N-Acetyltransferase/metabolism , Perciformes/physiology , Pineal Gland/enzymology , Retina/enzymology , Amino Acid Sequence , Animals , Arylalkylamine N-Acetyltransferase/genetics , Blotting, Northern , Cloning, Molecular , DNA, Complementary , Gene Expression Regulation , Melatonin/biosynthesis , Molecular Sequence Data , RNA, Messenger/analysis , Recombinant Proteins , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...