Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Matrix Biol ; 106: 34-57, 2022 02.
Article in English | MEDLINE | ID: mdl-35032612

ABSTRACT

Nerve guidance conduits (NGCs) are sub-optimal for long-distance injuries with inflammation and poor vascularization related to poor axonal repair. This study used a multi-factorial approach to create an optimized biomaterial NGC to address each of these issues. Through stepwise optimization, a collagen-chondroitin-6-sulfate (Coll-CS) biomaterial was functionalized with extracellular matrix (ECM) components; fibronectin, laminin 1 and laminin 2 (FibL1L2) in specific ratios. A snap-cooled freeze-drying process was then developed with optimal pore architecture and alignment to guide axonal bridging. Culture of adult rat dorsal root ganglia on NGCs demonstrated significant improvements in inflammation, neurogenesis and angiogenesis in the specific Fib:L1:L2 ratio of 1:4:1. In clinically relevant, large 15 mm rat sciatic nerve defects, FibL1L2-NGCs demonstrated significant improvements in axonal density and angiogenesis compared to unmodified NGCs with functional equivalence to autografts. Therefore, a multiparameter ECM-driven strategy can significantly improve axonal repair across large defects, without exogenous cells or growth factors.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Animals , Biocompatible Materials , Ganglia, Spinal , Inflammation/genetics , Rats
2.
Polymers (Basel) ; 12(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331241

ABSTRACT

Peripheral nerves are basic communication structures guiding motor and sensory information from the central nervous system to receptor units. Severed peripheral nerve injuries represent a large clinical problem with relevant challenges to successful synthetic nerve repair scaffolds as substitutes to autologous nerve grafting. Numerous studies reported the use of hollow tubes made of synthetic polymers sutured between severed nerve stumps to promote nerve regeneration while providing protection for external factors, such as scar tissue formation and inflammation. Few approaches have described the potential use of a lumen structure comprised of microchannels or microfibers to provide axon growth avoiding misdirection and fostering proper healing. Here, we report the use of a 3D porous microchannel-based structure made of a photocurable methacrylated polycaprolactone, whose mechanical properties are comparable to native nerves. The neuro-regenerative properties of the polymer were assessed in vitro, prior to the implantation of the 3D porous structure, in a 6-mm rat sciatic nerve gap injury. The manufactured implants were biocompatible and able to be resorbed by the host's body at a suitable rate, allowing the complete healing of the nerve. The innovative design of the highly porous structure with the axon guiding microchannels, along with the observation of myelinated axons and Schwann cells in the in vivo tests, led to a significant progress towards the standardized use of synthetic 3D multichannel-based structures in peripheral nerve surgery.

3.
Biotechnol Bioeng ; 113(9): 2041-53, 2016 09.
Article in English | MEDLINE | ID: mdl-26926914

ABSTRACT

Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three-dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041-2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.


Subject(s)
Peripheral Nerves , Tissue Engineering , Animals , Biocompatible Materials , Cells, Cultured , Histocytochemistry , Humans , Peripheral Nerves/chemistry , Peripheral Nerves/cytology , Peripheral Nerves/physiology , Schwann Cells , Swine
4.
J Anat ; 227(3): 302-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26200940

ABSTRACT

Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons.


Subject(s)
Nerve Regeneration/physiology , Peripheral Nerves/anatomy & histology , Tissue Engineering , Animals , Axons/physiology , Collagen/analysis , Extracellular Matrix/metabolism , Fibronectins/analysis , Glycosaminoglycans/analysis , Laminin/analysis , Male , Peripheral Nerves/physiology , Rats , Rats, Wistar , Sciatic Nerve/physiology , Swine , Tensile Strength/physiology , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...