Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rec ; 22(5): e202100334, 2022 May.
Article in English | MEDLINE | ID: mdl-35142426

ABSTRACT

Catalytic approaches to late-stage creation of new C-O bonds, especially via oxygenation of particular C-H groups in complex organic molecules, provide challenging tools for the synthesis of biologically active compounds and candidate drugs. In the last decade, significant efforts were invested in designing bioinspired iron based catalyst systems, capable of conducting selective oxidations of organic compounds. The key role of the oxygen-transferring high-valent iron-oxygen species in selective oxygenation is now well established; the next logical step would be gaining insight into the factors governing the oxidation chemo- and stereoselectivity, in relation to the peculiarities of their electronic structure, which would allow introducing the desired level of predictability into those catalytic transformations. In this Personal Account we analyze recent data on the reactivity of bioinspired formally oxoiron(V) catalytically active sites toward organic substrates having C=C and C(sp3 )-H groups. While the majority of reported oxoiron(V) active species are low-spin (S=1/2) complexes, the presence of strong electron-donating groups (NR1 R2 ) in the ligand backbone favors the high-spin (S=3/2) ground state. Remarkably, the high-spin perferryl species exhibit higher chemo-, regio-, and stereoselectivity in the oxidations than their low-spin counterparts, thus witnessing the significance of these subtle electronic effects for the selectivity of oxidations conducted by bioinspired catalysts of the Fe(PDP) family.


Subject(s)
Biomimetics , Iron , Catalysis , Iron/chemistry , Oxidation-Reduction , Oxygen/chemistry , Reactive Oxygen Species
2.
Chemistry ; 27(28): 7781-7788, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33780054

ABSTRACT

The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k1 and k2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners.

SELECTION OF CITATIONS
SEARCH DETAIL
...