Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2484, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509096

ABSTRACT

Squamous cell carcinomas (SCCs) are common and aggressive malignancies. Immune check point blockade (ICB) therapy using PD-1/PD-L1 antibodies has been approved in several types of advanced SCCs. However, low response rate and treatment resistance are common. Improving the efficacy of ICB therapy requires better understanding of the mechanism of immune evasion. Here, we identify that the SCC-master transcription factor TP63 suppresses interferon-γ (IFNγ) signaling. TP63 inhibition leads to increased CD8+ T cell infiltration and heighten tumor killing in in vivo syngeneic mouse model and ex vivo co-culture system, respectively. Moreover, expression of TP63 is negatively correlated with CD8+ T cell infiltration and activation in patients with SCC. Silencing of TP63 enhances the anti-tumor efficacy of PD-1 blockade by promoting CD8+ T cell infiltration and functionality. Mechanistically, TP63 and STAT1 mutually suppress each other to regulate the IFNγ signaling by co-occupying and co-regulating their own promoters and enhancers. Together, our findings elucidate a tumor-extrinsic function of TP63 in promoting immune evasion of SCC cells. Over-expression of TP63 may serve as a biomarker predicting the outcome of SCC patients treated with ICB therapy, and targeting TP63/STAT/IFNγ axis may enhance the efficacy of ICB therapy for this deadly cancer.


Subject(s)
Carcinoma, Squamous Cell , Interferon-gamma , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Immunity , Interferon-gamma/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Cell Death Dis ; 15(2): 152, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373993

ABSTRACT

Unlike most cancer types, the incidence of esophageal adenocarcinoma (EAC) has rapidly escalated in the western world over recent decades. Using whole genome bisulfite sequencing (WGBS), we identify the transcription factor (TF) FOXM1 as an important epigenetic regulator of EAC. FOXM1 plays a critical role in cellular proliferation and tumor growth in EAC patient-derived organoids and cell line models. We identify ERBB2 as an upstream regulator of the expression and transcriptional activity of FOXM1. Unexpectedly, gene set enrichment analysis (GSEA) unbiased screen reveals a prominent anti-correlation between FOXM1 and immune response pathways. Indeed, syngeneic mouse models show that FOXM1 inhibits the infiltration of CD8+ T cells into the tumor microenvironment. Consistently, FOXM1 suppresses CD8+ T cell chemotaxis in vitro and antigen-dependent CD8+ T cell killing. This study characterizes FOXM1 as a significant EAC-promoting TF and elucidates its novel function in regulating anti-tumor immune response.


Subject(s)
Adenocarcinoma , CD8-Positive T-Lymphocytes , Esophageal Neoplasms , Forkhead Box Protein M1 , Animals , Humans , Mice , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation , Epigenomics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic , Immunity , Tumor Microenvironment/immunology
3.
Cancers (Basel) ; 15(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38001638

ABSTRACT

ARID1A, a member of the chromatin remodeling SWI/SNF complex, is frequently lost in many cancer types, including esophageal adenocarcinoma (EAC). Here, we study the impact of ARID1A deficiency on the anti-tumor immune response in EAC. We find that EAC tumors with ARID1A mutations are associated with enhanced tumor-infiltrating CD8+ T cell levels. ARID1A-deficient EAC cells exhibit heightened IFN response signaling and promote CD8+ T cell recruitment and cytolytic activity. Moreover, we demonstrate that ARID1A regulates fatty acid metabolism genes in EAC, showing that fatty acid metabolism could also regulate CD8+ T cell recruitment and CD8+ T cell cytolytic activity in EAC cells. These results suggest that ARID1A deficiency shapes both tumor immunity and lipid metabolism in EAC, with significant implications for immune checkpoint blockade therapy in EAC.

4.
Genome Biol ; 24(1): 193, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620896

ABSTRACT

BACKGROUND: As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging. RESULTS: We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both methylation level and genomic distribution of PMDs across tumor samples. We identify subtype-specific PMDs that are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie genomic distribution of PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor HNF4A maintains the binding sites that it generates in normal cells, while establishing new binding sites cooperatively with novel partners such as FOSL1 in esophageal adenocarcinoma. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of cell-type-specific PMDs and DMRs identified here in esophageal cancer are actually markers that co-occur in other cancers originating from related cell types. CONCLUSIONS: These findings advance our understanding of DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.


Subject(s)
Adenocarcinoma , Carcinoma, Squamous Cell , Esophageal Neoplasms , Humans , Epigenesis, Genetic , Esophageal Neoplasms/genetics , Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Chromatin
5.
Sci Transl Med ; 14(673): eabq6146, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36449602

ABSTRACT

Inactivation of the tumor suppressor genes tumor protein p53 (TP53) and cyclin-dependent kinase inhibitor 2A (CDKN2A) occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, because of a paucity of GEJ-specific disease models, cancer-promoting consequences of TP53 and CDKN2A inactivation at the GEJ have not been characterized. Here, we report the development of a wild-type primary human GEJ organoid model and a CRISPR-edited transformed GEJ organoid model. CRISPR-Cas9-mediated TP53 and CDKN2A knockout (TP53/CDKN2AKO) in GEJ organoids induced morphologic dysplasia and proneoplastic features in vitro and tumor formation in vivo. Lipidomic profiling identified several platelet-activating factors (PTAFs) among the most up-regulated lipids in CRISPR-edited organoids. PTAF/PTAF receptor (PTAFR) abrogation by siRNA knockdown or a pharmacologic inhibitor (WEB2086) reduced proliferation and other proneoplastic features of TP53/CDKN2AKO GEJ organoids in vitro and tumor formation in vivo. In addition, murine xenografts of Eso26, an established human esophageal adenocarcinoma cell line, were suppressed by WEB2086. Mechanistically, TP53/CDKN2A dual inactivation disrupted both the transcriptome and the DNA methylome, likely mediated by key transcription factors, particularly forkhead box M1 (FOXM1). FOXM1 activated PTAFR transcription by binding to the PTAFR promoter, further amplifying the PTAF-PTAFR pathway. Together, these studies established a robust model system for investigating early GEJ neoplastic events, identified crucial metabolic and epigenomic changes occurring during GEJ model tumorigenesis, and revealed a potential cancer therapeutic strategy. This work provides insights into proneoplastic mechanisms associated with TP53/CDKN2A inactivation in early GEJ neoplasia, which may facilitate early diagnosis and prevention of GEJ neoplasms.


Subject(s)
Organoids , Tumor Suppressor Protein p53 , Humans , Animals , Mice , Tumor Suppressor Protein p53/genetics , Esophagogastric Junction , Carcinogenesis , Cell Transformation, Neoplastic , Cyclin-Dependent Kinase Inhibitor p16/genetics
6.
Cancers (Basel) ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36077628

ABSTRACT

Tumor organoid modeling has been recognized as a state-of-the-art system for in vitro research on cancer biology and precision oncology. Organoid culture technologies offer distinctive advantages, including faithful maintenance of physiological and pathological characteristics of human disease, self-organization into three-dimensional multicellular structures, and preservation of genomic and epigenomic landscapes of the originating tumor. These features effectively position organoid modeling between traditional cell line cultures in two dimensions and in vivo animal models as a valid, versatile, and robust system for cancer research. Here, we review recent advances in genomic and epigenomic characterization of tumor organoids and the novel findings obtained, highlight significant progressions achieved in organoid modeling of gene-drug interactions and genotype-phenotype associations, and offer perspectives on future opportunities for organoid modeling in basic and clinical cancer research.

7.
J Cell Sci ; 135(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35322853

ABSTRACT

Exposure to high levels of ionizing γ radiation leads to irreversible DNA damage and cell death. Here, we establish that exogenous application of electric stimulation enables cellular plasticity and the re-establishment of stem cell activity in tissues damaged by ionizing radiation. We show that subthreshold direct current stimulation (DCS) rapidly restores pluripotent stem cell populations previously eliminated by lethally γ-irradiated tissues of the planarian flatworm Schmidtea mediterranea. Our findings reveal that DCS enhances DNA repair, transcriptional activity, and cell cycle entry in post-mitotic cells. These responses involve rapid increases in cytosolic Ca2+ concentration through the activation of L-type Cav channels and intracellular Ca2+ stores, leading to the activation of immediate early genes and ectopic expression of stem cell markers in post-mitotic cells. Overall, we show the potential of electric current stimulation to reverse the damaging effects of high-dose γ radiation in adult tissues. Furthermore, our results provide mechanistic insights describing how electric stimulation effectively translates into molecular responses capable of regulating fundamental cellular functions without the need for genetic or pharmacological intervention.


Subject(s)
Planarians , Animals , Calcium/metabolism , Cell Cycle , DNA/metabolism , Electric Stimulation , Planarians/genetics , Planarians/metabolism , Radiation, Ionizing
8.
Bioelectricity ; 3(1): 77-91, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-34476379

ABSTRACT

Background: The use of direct current electric stimulation (DCS) is an effective strategy to treat disease and enhance body functionality. Thus, treatment with DCS is an attractive biomedical alternative, but the molecular underpinnings remain mostly unknown. The lack of experimental models to dissect the effects of DCS from molecular to organismal levels is an important caveat. Here, we introduce the planarian flatworm Schmidtea mediterranea as a tractable organism for in vivo studies of DCS. We developed an experimental method that facilitates the application of direct current electrical stimulation to the whole planarian body (pDCS). Materials and Methods: Planarian immobilization was achieved by combining treatment with anesthesia, agar embedding, and low temperature via a dedicated thermoelectric cooling unit. Electric currents for pDCS were delivered using pulled glass microelectrodes. The electric potential was supplied through a constant voltage power supply. pDCS was administered up to six hours, and behavioral and molecular effects were measured by using video recordings, immunohistochemistry, and gene expression analysis. Results: The behavioral immobilization effects are reversible, and pDCS resulted in a redistribution of mitotic cells along the mediolateral axis of the planarian body. The pDCS effects were dependent on the polarity of the electric field, which led to either increase in reductions in mitotic densities associated with the time of pDCS. The changes in mitotic cells were consistent with apparent redistribution in gene expression of the stem cell marker smedwi-1. Conclusion: The immobilization technique presented in this work facilitates studies aimed at dissecting the effects of exogenous electric stimulation in the adult body. Treatment with DCS can be administered for varying times, and the consequences evaluated at different levels, including animal behavior, cellular and transcriptional changes. Indeed, treatment with pDCS can alter cellular and transcriptional parameters depending on the polarity of the electric field and duration of the exposure.

9.
STAR Protoc ; 2(1): 100274, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33490988

ABSTRACT

In the planarian field, two techniques are mostly used for protein detection: immunohistochemistry (IHC) and western blotting. While IHC is great for visualizing the spatial distribution of proteins in whole organisms, it has limitations in antibody availability and issues related to nonspecific expression. The use of western blotting can circumvent nonspecific expression, providing a dependable way to quantify proteins of interest. Here, we present a standardized, easily reproducible protocol with details on protein extractions of whole planarians and western blotting. For complete details on the use and execution of this protocol, please refer to Ziman et al. (2020a).


Subject(s)
Blotting, Western , Helminth Proteins/metabolism , Planarians/metabolism , Regeneration , Animals
10.
iScience ; 23(11): 101665, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33134895

ABSTRACT

Tissue homeostasis relies on the timely renewal of cells that have been damaged or have surpassed their biological age. Nonetheless, the underlying molecular mechanism coordinating tissue renewal is unknown. The planarian Schmidtea mediterranea harbors a large population of stem cells that continuously divide to support the restoration of tissues throughout the body. Here, we identify that TNF Receptor Associated Factors (TRAFs) play critical roles in cellular survival during tissue repair in S. mediterranea. Disruption with RNA-interference of TRAF signaling results in rapid morphological defects and lethality within 2 weeks. The TRAF phenotype is accompanied by an increased number of mitoses and cell death. Our results also reveal TRAF signaling is required for proper regeneration of the nervous system. Taken together, we find functional conservation of TRAF-like proteins in S. mediterranea as they act as crucial regulators of cellular survival during tissue homeostasis and regeneration.

11.
J Cell Sci ; 133(10)2020 05 27.
Article in English | MEDLINE | ID: mdl-32265271

ABSTRACT

Nutrient availability upon feeding leads to an increase in body size in the planarian Schmidtea mediterranea However, it remains unclear how food consumption integrates with cell division at the organismal level. Here, we show that the NAD-dependent protein deacetylases sirtuins are evolutionarily conserved in planarians, and specifically demonstrate that the homolog of human sirtuin-1 (SIRT1) (encoded by Smed-Sirt-1), regulates organismal growth by impairing both feeding behavior and intestinal morphology. Disruption of Smed-Sirt-1 with RNAi or pharmacological inhibition of Sirtuin-1 leads to reduced animal growth. Conversely, enhancement of Sirtuin-1 activity with resveratrol accelerates growth. Differences in growth rates were associated with changes in the amount of time taken to locate food and overall food consumption. Furthermore, Smed-Sirt-1(RNAi) animals displayed reduced cell death and increased stem cell proliferation accompanied by impaired expression of intestinal lineage progenitors and reduced branching of the gut. Taken together, our findings indicate that Sirtuin-1 is a crucial metabolic hub capable of controlling animal behavior, tissue renewal and morphogenesis of the adult intestine.


Subject(s)
Planarians , Animals , Cell Division , Feeding Behavior , Humans , Planarians/genetics , RNA Interference , Sirtuin 1/genetics
12.
Front Microbiol ; 11: 629526, 2020.
Article in English | MEDLINE | ID: mdl-33519792

ABSTRACT

Candida albicans is one of the most common fungal pathogens of humans. Prior work introduced the planarian Schmidtea mediterranea as a new model system to study the host response to fungal infection at the organismal level. In the current study, we analyzed host-pathogen changes that occurred in situ during early infection with C. albicans. We found that the transcription factor Bcr1 and its downstream adhesin Als3 are required for C. albicans to adhere to and colonize the planarian epithelial surface, and that adherence of C. albicans triggers a multi-system host response that is mediated by the Dectin signaling pathway. This infection response is characterized by two peaks of stem cell divisions and transcriptional changes in differentiated tissues including the nervous and the excretory systems. This response bears some resemblance to a wound-like response to physical injury; however, it takes place without visible tissue damage and it engages a distinct set of progenitor cells. Overall, we identified two C. albicans proteins that mediate epithelial infection of planarians and a comprehensive host response facilitated by diverse tissues to effectively clear the infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...