Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 618(7964): 276-280, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225991

ABSTRACT

Photoinjection of charge carriers profoundly changes the properties of a solid. This manipulation enables ultrafast measurements, such as electric-field sampling1,2, advanced recently to petahertz frequencies3-7, and the real-time study of many-body physics8-13. Nonlinear photoexcitation by a few-cycle laser pulse can be confined to its strongest half-cycle14-16. Describing the associated subcycle optical response, vital for attosecond-scale optoelectronics, is elusive when studied with traditional pump-probe metrology as the dynamics distort any probing field on the timescale of the carrier, rather than that of the envelope. Here we apply field-resolved optical metrology to these dynamics and report the direct observation of the evolving optical properties of silicon and silica during the first few femtoseconds following a near-1-fs carrier injection. We observe that the Drude-Lorentz response forms within several femtoseconds-a time interval much shorter than the inverse plasma frequency. This is in contrast to previous measurements in the terahertz domain8,9 and central to the quest to speed up electron-based signal processing.

2.
Sci Adv ; 8(51): eade1029, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542717

ABSTRACT

Optical-field sampling techniques provide direct access to the electric field of visible and near-infrared light. The existing methods achieve the necessary bandwidth using highly nonlinear light-matter interaction that involves ionization of atoms or generation of charge carriers in solids. We demonstrate an alternative, all-optical approach for measuring electric fields of broadband laser pulses, which offers an advantage in terms of sensitivity and signal-to-noise ratio and extends the detection bandwidth of optical methods to the petahertzdomain.

3.
Phys Rev Lett ; 127(8): 087401, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34477433

ABSTRACT

Multiphoton excitation of a solid by a few-cycle, intense laser pulse forms a very nonequilibrium distribution of charge carriers, where occupation probabilities do not necessarily decrease with energy. Within a fraction of the pulse, significant population inversion can emerge between pairs of valence-band states with a dipole-allowed transition between them. This population inversion leads to stimulated emission in a laser-excited solid at frequencies where the unperturbed solid is transparent. We establish the optimal conditions for observing this kind of strong-field-induced optical gain.

SELECTION OF CITATIONS
SEARCH DETAIL
...