Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-439161

ABSTRACT

Although vaccines have been successfully developed and approved against SARS-CoV-2, it is still valuable to perform studies on conserved antigenic sites for preventing possible pandemic-risk of other SARS-like coronavirus in the future and prevalent SARS-CoV-2 variants. By antibodies obtained from convalescent COVID-19 individuals, receptor binding domain (RBD) were identified as immunodominant neutralizing domain that efficiently elicits neutralizing antibody response with on-going affinity mature. Moreover, we succeeded to define a quantitative antigenic map of neutralizing sites within SARS-CoV-2 RBD, and found that sites S2, S3 and S4 (new-found site) are conserved sites and determined as subimmunodominant sites, putatively due to their less accessibility than SARS-CoV-2 unique sites. P10-6G3, P07-4D10 and P05-6H7, respectively targeting S2, S3 and S4, are relatively rare antibodies that also potently neutralizes SARS-CoV, and the last mAbs performing neutralization without blocking S protein binding to receptor. Further, we have tried to design some RBDs to improve the immunogenicity of conserved sites. Our studies, focusing on conserved antigenic sites of SARS-CoV-2 and SARS-CoV, provide insights for promoting development of universal SARS-like coronavirus vaccines therefore enhancing our pandemic preparedness.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-280304

ABSTRACT

The lack of effective in vitro infection model for hepatitis E virus (HEV) has greatly hindered the quantitative analysis of neutralizing titers of anti-HEV antibodies and human sera, thus impeding further studies of HEV-stimulated antibody responses and the immunological mechanisms. In order to improve this situation, the infection of HepG2 cells that are inefficient for HEV replication was continuously monitored until the viral load reached the limit of detection on day 13, the results of which confirmed the feasibility of using this cell line to establish the infection model. Then, neutralization assays of five anti-HEV murine monoclonal antibodies and serum samples collected from four HEV vaccine recipients (collected before and after vaccination) were performed by 96 multi-channel parallel infections, nucleic acid extraction, and qPCR. The results showed that the cell model can be applied for quantitative evaluation of the neutralizing capacity of different antibodies and antiserum samples from HEV vaccine recipients. In this study, we have successfully established a high-throughput in vitro HEV replication model, which will prove to be useful for the evaluation of HEV vaccines and studies of HEV epitopes.


Subject(s)
Animals , Humans , Mice , Antibodies, Viral , Allergy and Immunology , Hepatitis Antibodies , Allergy and Immunology , Hepatitis E , Allergy and Immunology , Virology , Hepatitis E virus , Chemistry , Allergy and Immunology , Physiology , High-Throughput Screening Assays , Methods , Mice, Inbred BALB C , Neutralization Tests , Methods , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...