Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 138: 107695, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33296790

ABSTRACT

A molecularly imprinted polymer (MIP) film based electrochemical sensor for selective determination of tyramine was devised, fabricated, and tested. Tyramine is generated in smoked and fermented food products. Therefore, it may serve as a marker of the rottenness of these products. Importantly, intake of large amounts of tyramine by patients treated with monoamine oxidase (MAO) inhibitors may lead to a "cheese effect", namely, a dangerous hypertensive crisis. The limit of detection at S/N = 3 of the chemosensor, in both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) determinations, with the use of the Fe(CN)64-/Fe(CN)63- redox probe, was 159 and 168 µM tyramine, respectively. The linear dynamic concentration range was 290 µM to 2.64 mM tyramine. The chemosensor was highly selective with respect to the glucose, urea, and creatinine interferences. Its DPV determined apparent imprinting factor was 5.6. Moreover, the mechanism of the "gate effect" in the operation of the polymer film-coated electrodes was unraveled.


Subject(s)
Electrochemistry/instrumentation , Limit of Detection , Molecularly Imprinted Polymers/chemistry , Tyramine/analysis , Electrodes , Linear Models , Oxidation-Reduction , Tyramine/chemistry
2.
ACS Appl Mater Interfaces ; 11(9): 9265-9276, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30714713

ABSTRACT

We present an improved approach for the preparation of highly selective and homogeneous molecular cavities in molecularly imprinted polymers (MIPs) via the combination of surface imprinting and semi-covalent imprinting. Toward that, first, a colloidal crystal mold was prepared via the Langmuir-Blodgett (LB) technique. Then, human chorionic gonadotropin (hCG) template protein was immobilized on the colloidal crystal mold. Later, hCG derivatization with electroactive functional monomers via amide chemistry was performed. In a final step, optimized potentiostatic polymerization of 2,3'-bithiophene enabled depositing an MIP film as the macroporous structure. This synergistic strategy resulted in the formation of molecularly imprinted cavities exclusively on the internal surface of the macropores, which were accessible after dissolution of silica molds. The recognition of hCG by the macroporous MIP film was transduced with the help of electric transducers, namely, extended-gate field-effect transistors (EG-FET) and capacitive impedimetry (CI). These readout strategies offered the ability to create chemosensors for the label-free determination of the hCG hormone. Other than the simple confirmation of pregnancy, hCG assay is a common tool for the diagnosis and follow-up of ectopic pregnancy or trophoblast tumors. Concentration measurements with these EG-FET and CI-based devices allowed real-time measurements of hCG in the range of 0.8-50  and 0.17-2.0 fM, respectively, in 10 mM carbonate buffer (pH = 10). Moreover, the selectivity of chemosensors with respect to protein interferences was very high.


Subject(s)
Chorionic Gonadotropin/analysis , Electrochemical Techniques/methods , Molecular Imprinting , Electric Conductivity , Electrochemical Techniques/instrumentation , Electroplating , Gold/chemistry , Humans , Immobilized Proteins/chemistry , Polymerization , Polymers/chemistry , Porosity , Reproducibility of Results , Surface Properties , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...