Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Genes (Basel) ; 14(3)2023 03 15.
Article in English | MEDLINE | ID: mdl-36980989

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI) is a non-syndromic congenital disorder of cornification characterized by abnormal scaling of the skin. The three major phenotypes are lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. ARCI is caused by biallelic mutations in ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, PNPLA1, SDR9C7, SULT2B1, and TGM1. The most severe form of ARCI, harlequin ichthyosis, is caused by mutations in ABCA12. Mutations in this gene can also lead to congenital ichthyosiform erythroderma or lamellar ichthyosis. We present a large cohort of 64 patients affected with ARCI carrying biallelic mutations in ABCA12. Our study comprises 34 novel mutations in ABCA12, expanding the mutational spectrum of ABCA12-associated ARCI up to 217 mutations. Within these we found the possible mutational hotspots c.4541G>A, p.(Arg1514His) and c.4139A>G, p.(Asn1380Ser). A correlation of the phenotype with the effect of the genetic mutation on protein function is demonstrated. Loss-of-function mutations on both alleles generally result in harlequin ichthyosis, whereas biallelic missense mutations mainly lead to CIE or LI.


Subject(s)
Ichthyosiform Erythroderma, Congenital , Ichthyosis, Lamellar , Humans , Ichthyosis, Lamellar/genetics , Genes, Recessive , Mutation , Ichthyosiform Erythroderma, Congenital/genetics , Genetic Association Studies , ATP-Binding Cassette Transporters/genetics , Acyltransferases/genetics , Phospholipases/genetics
2.
Br J Dermatol ; 188(1): 94-99, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36689507

ABSTRACT

BACKGROUND: Hyperkeratosis lenticularis perstans (HLP), also known as Flegel disease, is a rare skin disease presenting with asymptomatic small hyperkeratotic papules. The lesions often appear on the dorsal feet and lower legs, and typically develop after the fourth decade of life. A genetic basis for HLP is suspected; however, so far no gene defect linked to the development of HLP has been identified. OBJECTIVES: We aimed to identify the genetic cause of HLP. METHODS: For mutational analysis we studied a cohort of five patients with HLP using next-generation sequencing (NGS). We used DNA -extracted from fresh skin biopsies alongside ethylenediamine tetraacetic acid (EDTA) blood samples from two patients, and formalin-fixed -paraffin-embedded skin biopsy material from three patients. In addition, immunofluorescence staining of HLP lesions from four patients was investigated. RESULTS: In all samples from the five patients with HLP we identified by NGS rare variants in the SPTLC1 gene. In four patients we detected small deletions/frameshift variants and in one patient a splicing variant, predicted to disturb the splicing process. In blood samples the detected variants were heterozygous with an allele frequency of 49% and 50%, respectively. In skin biopsies the allele frequency was within the range of 46-62%. Immunofluorescence staining revealed reduced SPTLC1 protein levels in skin of patients. CONCLUSIONS: Our findings suggest that pathogenic variants in the SPTLC1 gene are the underlying genetic cause of HLP. Of note, the identified variants were either frameshift- or splicing variants probably leading to nonsense-mediated mRNA decay and thus reduced SPTLC1 protein levels. We conclude that diminished SPTLC1, the key enzyme in sphingolipid biosynthesis, leads to the development of HLP, which highlights the sphingolipid pathway as a new therapeutic target.


Subject(s)
Keratosis , Humans , Keratosis/pathology , Skin/pathology , Biopsy/adverse effects , Serine C-Palmitoyltransferase
3.
BMC Med Genomics ; 15(1): 4, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34983512

ABSTRACT

BACKGROUND: Ichthyosis is a heterogeneous group of Mendelian cornification disorders that includes syndromic and non-syndromic forms. Autosomal Recessive Congenital Ichthyosis (ARCI) and Ichthyosis Linearis Circumflexa (ILC) belong to non-syndromic forms. Syndromic ichthyosis is rather a large group of heterogeneous diseases. Overlapping phenotypes and genotypes between these disorders is a major characteristic. Therefore, determining the specific genetic background for each form would be necessary. METHODS: A total of 11 Tunisian patients with non-syndromic (8 with ARCI and 2 with ILC) and autosomal syndromic ichthyosis (1 patient) were screened by a custom Agilent HaloPlex multi-gene panel and the segregation of causative mutations were analyzed in available family members. RESULTS: Clinical and molecular characterization, leading to genotype-phenotype correlation in 11 Tunisian patients was carried out. Overall, we identified 8 mutations in 5 genes. Thus, in patients with ARCI, we identified a novel (c.118T > C in NIPAL4) and 4 already reported mutations (c.534A > C in NIPAL4; c.788G > A and c.1042C > T in TGM1 and c.844C > T in CYP4F22). Yellowish severe keratoderma was found to be associated with NIPAL4 variations and brachydactyly to TGM1 mutations. Two novel variations (c.5898G > C and c.2855A > G in ABCA12) seemed to be features of ILC. Delexon13 in CERS3 was reported in a patient with syndromic ichthyosis. CONCLUSIONS: Our study further extends the spectrum of mutations involved in ichthyosis as well as clinical features that could help directing genetic investigation.


Subject(s)
Ichthyosiform Erythroderma, Congenital , Ichthyosis , Genetic Association Studies , Humans , Ichthyosiform Erythroderma, Congenital/genetics , Ichthyosis/genetics , Mutation , Phenotype , Tunisia
4.
Front Genet ; 12: 719624, 2021.
Article in English | MEDLINE | ID: mdl-34956305

ABSTRACT

Neonatal collodion baby or ichthyosis can pose a diagnostic challenge, and in many cases, only additional organ involvement or the course of the disease will help differentiate between non-syndromic and syndromic forms. Skin abnormalities are described in about 20% of the congenital disorders of glycosylation (CDG). Among those, some rare CDG forms constitute a special group among the syndromic ichthyoses and can initially misdirect the diagnosis towards non-syndromic genodermatosis. DOLK-CDG is such a rare subtype, resulting from a defect in dolichol kinase, in which the congenital skin phenotype (often ichthyosis) is later associated with variable extracutaneous features such as dilatative cardiomyopathy, epilepsy, microcephaly, visual impairment, and hypoglycemia and may lead to a fatal course. We report two neonatal cases of lethal ichthyosis from the same family, with distal digital constrictions and a progressive course leading to multi-organ failure and death. Postmortem trio whole-exome sequencing revealed the compound heterozygous variants NM_014908.3: c.1342G>A, p.(Gly448Arg) and NM_014908.3: c.1558A>G, p.(Thr520Ala) in the DOLK gene in the first affected child, which were confirmed in the affected sibling. Reduced staining with anti-α-Dystroglycan antibody was observed in frozen heart tissue of the second child as an expression of reduced O-mannosylation due to the dolichol kinase deficiency. In addition to the detailed dermatopathological changes, both cases presented hepatic and extrahepatic hemosiderosis on histological examination. Our patients represent an early and fatal form of DOLK-CDG with a striking presentation at birth resembling severe collodion baby. Both cases emphasize the phenotypic variability of glycosylation disorders and the importance to broaden the differential diagnosis of ichthyosis and to actively search for organ involvement in neonates with ichthyosis.

5.
Genes (Basel) ; 12(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34680878

ABSTRACT

In about 20-30% of all women with breast cancer, an increased number of cases of breast cancer can be observed in their family history. However, currently, only 5-10% of all breast cancer cases can be attributed to a pathogenic gene alteration. Molecular genetic diagnostics underwent enormous development within the last 10 years. Next-generation sequencing approaches allow increasingly extensive analyses resulting in the identification of additional candidate genes. In the present work, the germline molecular diagnostic analysis of a cohort of 228 patients with suspected hereditary breast and ovarian cancer syndrome (HBOC) was evaluated. The 27 pathogenic gene variants initially detected are listed, and their distribution in the high-risk BRCA1 and BRCA2 genes is presented in this study. In ten high-risk patients, in whom, to date, no pathogenic variant could be detected, an extended genetic analysis of previously not considered risk genes was performed. Three variants of uncertain significance and one pathogenic variant could be described. This proves the importance of extended analysis using current molecular genetic methods.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Pathology, Molecular , Female , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation/genetics , Hereditary Breast and Ovarian Cancer Syndrome/epidemiology , Hereditary Breast and Ovarian Cancer Syndrome/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Proteins/genetics , Risk Factors
6.
Genes (Basel) ; 12(1)2021 01 09.
Article in English | MEDLINE | ID: mdl-33435499

ABSTRACT

The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations.


Subject(s)
Arachidonate 12-Lipoxygenase/genetics , Ichthyosiform Erythroderma, Congenital/genetics , Lipoxygenase/genetics , Mutation , Adult , Cohort Studies , Female , Humans , Male
7.
JIMD Rep ; 55(1): 51-58, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32905044

ABSTRACT

Many of the genetic childhood disorders leading to death in the perinatal period follow autosomal recessive inheritance and bear specific challenges for genetic counseling and prenatal diagnostics. Often, affected children die before a genetic diagnosis can be established, thereby precluding targeted carrier testing in parents and prenatal or preimplantation genetic diagnosis in further pregnancies. The clinical phenotype of congenital disorders of glycosylation (CDG) is very heterogeneous and ranges from relatively mild symptoms to severe multisystem dysfunction and even a fatal course. A very rare subtype, COG6-CDG, is caused by deficiency of subunit 6 of the conserved oligomeric Golgi complex and is usually characterized by growth retardation, developmental delay, microcephaly, liver and gastrointestinal disease, joint contractures and episodic fever. It has been proposed that a distinctive feature of COG6-CDG can be ectodermal signs such as hypohidrosis/hyperthermia, hyperkeratosis and tooth anomalies. In a Greek family, who had lost two children in the neonatal period, with prominent skin features initially resembling restrictive dermopathy, severe arthrogryposis, respiratory insufficiency and a rapid fatal course trio whole-exome sequencing revealed the homozygous nonsense mutation c.511C>T, p.(Arg171*) in the COG6 gene. Skin manifestations such as dry skin and hyperkeratosis have been reported in only five out of the 21 reported COG6-CDG cases so far, including two patients with the c.511C>T variant in COG6 but with milder ectodermal symptoms. Our case adds to the phenotypic spectrum of COG6-CDG with prominent ectodermal manifestations at birth and underlines the importance of considering CDG among the possible causes for congenital syndromic genodermatoses.

8.
Hum Mutat ; 40(12): 2318-2333, 2019 12.
Article in English | MEDLINE | ID: mdl-31347739

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI) belongs to a heterogeneous group of disorders of keratinization. To date, 10 genes have been identified to be causative for ARCI. NIPAL4 (Nipa-Like Domain-Containing 4) is the second most commonly mutated gene in ARCI. In this study, we present a large cohort of 101 families affected with ARCI carrying mutations in NIPAL4. We identified 16 novel mutations and increase the total number of pathogenic mutations in NIPAL4 to 34. Ultrastructural analysis of biopsies from six patients showed morphological abnormalities consistent with an ARCI EM type III. One patient with a homozygous splice site mutation, which leads to a loss of NIPAL4 mRNA, showed additional ultrastructural aberrations together with a more severe clinical phenotype. Our study gives insights into the frequency of mutations, a potential hot spot for mutations, and genotype-phenotype correlations.


Subject(s)
Ichthyosis/genetics , Ichthyosis/pathology , Mutation , Receptors, Cell Surface/genetics , Adult , Aged , Aged, 80 and over , Biopsy , Cell Line , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pedigree , Receptors, Cell Surface/chemistry , Sequence Analysis, DNA , Young Adult
9.
J Invest Dermatol ; 139(10): 2154-2163.e5, 2019 10.
Article in English | MEDLINE | ID: mdl-31082376

ABSTRACT

Trichilemmal cysts are common hair follicle-derived intradermal cysts. The trait shows an autosomal dominant mode of transmission with incomplete penetrance. Here, we describe the pathogenetic mechanism for the development of hereditary trichilemmal cysts. By whole-exome sequencing of DNA from the blood samples of 5 affected individuals and subsequent Sanger sequencing of a family cohort including 35 affected individuals, this study identified a combination of the Phospholipase C Delta 1 germline variants c.903A>G, p.(Pro301Pro) and c.1379C>T, p.(Ser460Leu) as a high-risk factor for trichilemmal cyst development. Allele-specific PCRs and cloning experiments showed that these two variants are present on the same allele. The analysis of tissue from several cysts revealed that an additional somatic Phospholipase C Delta 1 mutation on the same allele is required for cyst formation. In two different functional in vitro assays, this study showed that the protein function of the cyst-specific 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase delta-1 protein variant is modified. This pathologic mechanism defines a monoallelic model of the two-hit mechanism proposed for tumor development and other hereditary cyst diseases.


Subject(s)
Epidermal Cyst/genetics , Epidermal Cyst/pathology , Genetic Predisposition to Disease , Phospholipase C delta/genetics , Skin Diseases/genetics , Skin Diseases/pathology , Alleles , Biopsy, Needle , Female , Germ-Line Mutation , Hair Follicle/pathology , Humans , Immunohistochemistry , Male , Pedigree , Real-Time Polymerase Chain Reaction/methods , Scalp/pathology , Exome Sequencing
11.
J Leukoc Biol ; 104(5): 969-985, 2018 11.
Article in English | MEDLINE | ID: mdl-30040142

ABSTRACT

Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH 1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulation-mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexia-can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.


Subject(s)
B7-H1 Antigen/immunology , Interleukin-6/immunology , Interleukins/immunology , Neoplasms/immunology , STAT1 Transcription Factor/immunology , Tumor Escape/immunology , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Humans , Interleukin-6/antagonists & inhibitors , Signal Transduction/immunology
12.
Hum Mutat ; 39(10): 1305-1313, 2018 10.
Article in English | MEDLINE | ID: mdl-30011118

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of rare disorders of keratinization characterized by generalized abnormal scaling of the skin. Ten genes are currently known to be associated with ARCI: TGM1, ALOXE3, ALOX12B, NIPAL4 (ICHTHYIN), ABCA12, CYP4F22, PNPLA1, CERS3, SDR9C7, and SULT2B1. Over a period of 22 years, we have studied a large patient cohort from 770 families with a clinical diagnosis of ARCI. Since the first report that mutations in the gene CYP4F22 are causative for ARCI in 2006, we have identified 54 families with pathogenic mutations in CYP4F22 including 23 previously unreported mutations. In this report, we provide an up-to-date overview of all published and novel CYP4F22 mutations and point out possible mutation hot spots. We discuss the molecular and clinical findings, the genotype-phenotype correlations and consequences on genetic testing.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Genes, Recessive , Genetic Association Studies , Ichthyosis/diagnosis , Ichthyosis/genetics , Mutation , Alleles , Computational Biology/methods , Female , Genetic Testing , Genotype , Humans , Male , Pedigree , Phenotype , Skin/pathology , Skin/ultrastructure
13.
Nucleic Acids Res ; 46(11): 5822-5836, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29596649

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants.


Subject(s)
Bryopsida/enzymology , Bryopsida/genetics , Nonsense Mediated mRNA Decay , Phosphotransferases/physiology , Plant Proteins/physiology , 3' Untranslated Regions , Bryopsida/metabolism , DNA Damage , Gene Expression , Mutation , Phosphotransferases/genetics , Plant Proteins/genetics , Unfolded Protein Response
14.
Plant J ; 93(3): 515-533, 2018 02.
Article in English | MEDLINE | ID: mdl-29237241

ABSTRACT

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.


Subject(s)
Biological Evolution , Bryopsida/genetics , Chromosomes, Plant , Genome, Plant , Centromere , Chromatin/genetics , DNA Methylation , DNA Transposable Elements , Genetic Variation , Polymorphism, Single Nucleotide , Recombination, Genetic , Synteny
15.
Biochim Biophys Acta Gen Subj ; 1861(12): 3272-3281, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28964816

ABSTRACT

BACKGROUND: Protein kinase CK2 is induced early in adipogenesis whereas later on, this kinase seems to be dispensable. Here, we have analysed how CK2 might be involved in early steps of differentiation of 3T3-L1 cells. METHODS: 3T3-L1 cells were differentiated to adipocytes in the absence or presence of quinalizarin. The expression and localization of important transcription factors was analysed by Western blot and immunofluorescence. DNA binding capacity and transactivation was analysed with pull-down assays and with luciferase reporter experiments, respectively. mRNA was detected with qRT-PCR, miRNAs with Northern hybridization and qRT-PCR. RESULTS: We show that clonal expansion was considerably repressed upon inhibition of CK2 with quinalizarin. Moreover, to prevent adipogenesis CK2 inhibition had to take place before day 4 of differentiation. Neither the expression at the protein or at the RNA level nor the subcellular localization of the transcription factors C/EBPß and C/EBPδ was affected by CK2 inhibition. There was, however, a drastic reduction in the mRNA and protein levels of C/EBPα and PPARγ2. Upon inhibition of CK2, we found a significant up-regulation of the level of the microRNAs miR-27a and miR-27b, which are known to target PPARγ mRNA. CONCLUSIONS: Time course experiments revealed that CK2 seems to be required at early time points after the induction of differentiation. One important target of CK2 was identified as PPARγ, which is down-regulated after inhibition of CK2. GENERAL SIGNIFICANCE: This is the first report about i) cellular targets of CK2 during adipogenesis and ii) a role of CK2 in microRNA regulation.


Subject(s)
Adipogenesis/drug effects , Anthraquinones/pharmacology , CCAAT-Enhancer-Binding Protein-alpha/genetics , Casein Kinase II/antagonists & inhibitors , MicroRNAs/physiology , PPAR gamma/genetics , 3T3-L1 Cells , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Dimethyl Sulfoxide/pharmacology , Down-Regulation , Mice
16.
Am J Hum Genet ; 100(6): 926-939, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575648

ABSTRACT

Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism.


Subject(s)
Genes, Recessive , Genetic Predisposition to Disease , Ichthyosis, Lamellar/genetics , Mutation/genetics , Sulfotransferases/genetics , Binding Sites/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Cholesterol Esters/chemistry , Cholesterol Esters/metabolism , Cohort Studies , Family , Female , Gene Expression Regulation , Humans , Ichthyosis, Lamellar/pathology , Male , Models, Biological , Pedigree , Protein Transport , RNA Splice Sites/genetics , Skin/pathology , Skin/ultrastructure , Sulfotransferases/chemistry , Sulfotransferases/metabolism
17.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 516-526, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27939431

ABSTRACT

Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition.


Subject(s)
Hepatocytes/immunology , Interferon-gamma/genetics , Interleukin-6/genetics , Interleukins/immunology , Suppressor of Cytokine Signaling 3 Protein/immunology , Cell Line, Tumor , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/immunology , Fibrinogen/genetics , Fibrinogen/immunology , Gene Expression Regulation , Hepatocytes/pathology , Humans , Interferon-gamma/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-6/immunology , Interleukins/genetics , Microarray Analysis , Phosphorylation , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/genetics
18.
Acta Derm Venereol ; 96(7): 932-937, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27025581

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI) represents a heterogeneous group of rare disorders of cornification with 3 major subtypes: harlequin ichthyosis (HI), lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE). A 4th subtype has also been proposed: pleomorphic ichthyosis (PI), characterized by marked skin changes at birth and subsequently mild symptoms. In nationwide screenings of suspected cases of ARCI in Denmark and Sweden, we identified 132 patients (age range 0.1-86 years) classified as HI (n = 7), LI (n = 70), CIE (n = 17) and PI (n = 38). At birth, a collodion membrane or similar severe hyperkeratosis was reported in almost all patients with HI and LI, and in nearly half of patients with CIE and PI. Persistent ectropion was more common in HI (85%) and LI (57%), than in CIE (35%) and PI (5%). Anhidrosis was a frequent problem in all 4 groups (58-100%). A scoring (0-4) of ichthyosis/ery-thema past infancy showed widely different mean values in the subgroups: HI (3.2/3.1), LI (2.4/0.6), CIE (1.8/1.6), PI (1.1/0.3). Novel or recurrent mutations were found in 113 patients: TGM1 (n = 56), NIPAL4 (n = 15), ALOX12B (n = 15), ABCA12 (n = 8), ALOXE3 (n = 9), SLC27A4 (n = 5), CYP4F22 (n = 3), PNPLA1 (n = 1) and ABHD5 (n = 1). In conclusion, by performing a deep phenotyping and gene screening, ARCI can be definitely diagnosed in 85% of cases in Scandinavia, with a prevalence of 1:100,000 and > 8 different aetiologies.


Subject(s)
Ichthyosiform Erythroderma, Congenital/epidemiology , Ichthyosiform Erythroderma, Congenital/genetics , Mutation/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Consanguinity , DNA Mutational Analysis , Denmark/epidemiology , Female , Genes, Recessive , Genetic Predisposition to Disease , Genetic Testing , Genotype , Humans , Ichthyosiform Erythroderma, Congenital/classification , Infant , Male , Middle Aged , Sweden/epidemiology
19.
Int J Biochem Cell Biol ; 61: 81-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25680545

ABSTRACT

Protein kinase CK2 plays an essential role in cell viability in lower and higher eukaryotes. As a global regulator it phosphorylates and thereby regulates a broad array of cellular targets including a large number of transcription factors. Here, we have identified the CCAAT/enhancer binding protein δ (C/EBPδ) as a new substrate for CK2. Using point mutants of C/EBPδ the major phosphorylation site for CK2 was mapped to serine 57, which is located within the transactivation domain of C/EBPδ. For proper functioning as a transcription factor C/EBPδ has to be translocated into the nucleus where it forms heterodimers with other members of the C/EBP family of proteins and ATF4. Here, we found that CK2 phosphorylation does neither influence the subcellular localization of C/EBPδ nor its interaction with C/EBPß, but rather does CK2 phosphorylation modulate the transcriptional activity of C/EBPδ. Moreover, we found that CK2 bound to C/EBPδ, which might help to target CK2 to the transcriptional machinery where it can phosphorylate other transcription factors or co-activators.


Subject(s)
CCAAT-Enhancer-Binding Protein-delta/metabolism , Casein Kinase II/metabolism , Amino Acid Sequence , CCAAT-Enhancer-Binding Protein-delta/genetics , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Catalytic Domain , Conserved Sequence , HCT116 Cells , Humans , Molecular Sequence Data , Phosphorylation , Protein Interaction Domains and Motifs , Protein Kinase Inhibitors/pharmacology , Transcriptome
20.
New Phytol ; 205(2): 869-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25209349

ABSTRACT

The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes.


Subject(s)
Acclimatization/genetics , Bryopsida/physiology , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Acclimatization/physiology , Bryopsida/genetics , Bryopsida/growth & development , Cold Temperature , Gene Ontology , Reproducibility of Results , Signal Transduction/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...