Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 118(5): 1246-55, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24417356

ABSTRACT

Current in vitro methods to assess nanomaterial cytotoxicity involve various assays to monitor specific cellular dysfunction, such as metabolic imbalance or inflammation. Although high throughput, fast, and animal-free, these in vitro methods suffer from unreliability and lack of relevance to in vivo situations. New approaches, especially with the potential to reliably relate to in vivo studies directly, are in critical need. This work introduces a new approach, single cell mechanics, derived from atomic force microscopy-based single cell compression. The single cell based approach is intrinsically advantageous in terms of being able to directly correlate to in vivo investigations. Its reliability and potential to measure cytotoxicity is evaluated using known systems: zinc oxide (ZnO) and silicon dioxide (SiO2) nanoparticles (NP) on human aortic endothelial cells (HAECs). This investigation clearly indicates the reliability of single cell compression. For example, ZnO NPs cause significant changes in force vs relative deformation profiles, whereas SiO2 NPs do not. New insights into NPs-cell interactions pertaining to cytotoxicity are also revealed from this single cell mechanics approach, in addition to a qualitative cytotoxicity conclusion. The advantages and disadvantages of this approach are also compared with conventional cytotoxicity assays.


Subject(s)
Cell Survival/drug effects , Metal Nanoparticles/toxicity , Cell Shape/drug effects , Elastic Modulus , Human Umbilical Vein Endothelial Cells , Humans , Metal Nanoparticles/chemistry , Microscopy, Atomic Force , Silicon Dioxide/chemistry , Single-Cell Analysis , Zinc Oxide/chemistry
2.
Proc Natl Acad Sci U S A ; 107(31): 13872-7, 2010 Aug 03.
Article in English | MEDLINE | ID: mdl-20643929

ABSTRACT

By using a highly sensitive technique of atomic force microscopy-based single-cell compression, the rigidity of cultured N2a and HT22 neuronal cells was measured as a function of amyloid-beta42 (Abeta42) protein treatment. Abeta42 oligomers led to significant cellular stiffening; for example, 90-360% higher force was required to reach 80% deformation for N2a cells. Disaggregated or fibrillar forms of Abeta42 showed much less change. These observations were explained by a combination of two factors: (i) incorporation of oligomer into cellular membrane, which resulted in an increase in the Young's modulus of the membrane from 0.9+/-0.4 to 1.85+/-0.75 MPa for N2a cells and from 1.73+/-0.90 to 5.5+/-1.4 MPa for HT22 cells, and (ii) an increase in intracellular osmotic pressure (e.g., from 7 to 40 Pa for N2a cells) through unregulated ion influx. These findings and measurements provide a deeper, more characteristic, and quantitative insight into interactions between cells and Abeta42 oligomers, which have been considered the prime suspect for initiating neuronal dysfunction in Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/chemistry , Cell Communication , Neurons/chemistry , Animals , Cell Line , Mice , Neurons/physiology , Nonlinear Dynamics , Protein Multimerization
3.
Langmuir ; 24(5): 2232-9, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18198912

ABSTRACT

Protein microarrays are rapidly emerging as valuable tools in creating combinatorial cell culture systems where inducers of cellular differentiation can be identified in a rapid and multiplexed fashion. In the present study, protein microarraying was combined with photoresist lithography to enable printing of extracellular matrix (ECM) protein arrays while precisely controlling "on-the-spot" cell-cell interactions. In this surface engineering approach, the micropatterned photoresist layer formed on a glass substrate served as a temporary stencil during the microarray printing, defining the micrometer-scale dimensions and the geometry of the cell-adhesion domains within the printed protein spots. After removal of the photoresist, the glass substrates contained micrometer-scale cell-adhesive regions that were encoded within 300 or 500 microm diameter protein domains. Fluorescence microscopy and atomic force microscopy (AFM) were employed to characterize protein micropatterns. When incubated with micropatterned surfaces, hepatic (HepG2) cells attached on 300 or 500 mum diameter protein spots; however, the extent of cell-cell contacts within each spot varied in accordance with dimensions of the photoresist stencil, from single cells attaching on 30 microm diameter features to multicell clusters residing on 100 or 200 microm diameter regions. Importantly, the photoresist removal process was shown to have no detrimental effects on the ability of several ECM proteins (collagens I, II, and IV and laminin) to support functional hepatic cultures. The micropatterning approach described here allows for a small cell population seeded onto a single cell culture substrate to be exposed to multiple scenarios of cell-cell and cell-surface interactions in parallel. This technology will be particularly useful for high-throughput screening of biological stimuli required for tissue specification of stem cells or for maintenance of differentiated phenotype in scarce primary cells.


Subject(s)
Cell Culture Techniques/methods , Protein Array Analysis/methods , Cell Adhesion , Cell Line, Tumor , Cells, Cultured , Humans , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...