Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Genet ; 48(3): 290-300, 2005.
Article in English | MEDLINE | ID: mdl-16179224

ABSTRACT

Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to approximately 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Intellectual Disability/genetics , Oligonucleotide Array Sequence Analysis/methods , Proteins/genetics , Abnormalities, Multiple/diagnosis , Child , DNA/analysis , Gene Deletion , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/diagnosis , Syndrome , Trans-Activators , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...