Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(1): e17152, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273532

ABSTRACT

Biodiversity loss can have significant consequences for human well-being, as it can affect multiple ecosystem properties and processes (MEPP) that drive ecosystem services. However, a comprehensive understanding of the link between environmental factors, biodiversity, and MEPP remains elusive, especially in mangrove ecosystems that millions of people along tropical coastlines worldwide depend upon. Here, we collated a comprehensive dataset on forest inventory, plant traits, and environmental factors across 93 plots in the Sundarbans Reserved Forests, Bangladesh. The functional composition (FC) of leaf area showed a stronger positive association with MEPP, being determined by total biomass and productivity of the mangroves, sediment organic carbon, and ammonium, phosphorus, and potassium contents of the sediment, than species richness (SR) or functional diversity (FD). Further, FC mediated a strong negative association of sediment salinity, and a positive association of SR, with MEPP. The similar but opposite total associations of SR and sediment salinity with MEPP suggest that species-rich mangroves could offset the negative impacts of rising salinity on MEPP. When focusing on a single aspect of MEPP, both FD and FC mattered, with the FD of leaf area showing a strong association with mangrove productivity and sediment potassium content, while the FC of leaf litter nitrogen showed the strongest associations with sediment ammonium and phosphorus contents. Therefore, to sustain mangrove ecosystems as a reliable nature-based solution for climate change mitigation, conservation and (re-)establishment projects should prioritize regionally dominant species with high leaf area and nitrogen content, plus functionally different species to support the ecosystem processes and services provided by mangroves.


Subject(s)
Ammonium Compounds , Ecosystem , Humans , Wetlands , Forests , Nitrogen , Phosphorus , Potassium
2.
Ecol Evol ; 13(9): e10458, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701024

ABSTRACT

'Ecosystem function' and 'ecosystem functioning' became core keywords in the ecological literature on ecosystems, their structure, development and integrity. We investigate functions from the perspective of causal contributions to higher capacities, as selected effects, as contributions to the stability and self-maintenance of organisms and as type-fixed effects. Based on an in-depth discourse in philosophy of science, we conclude that ecosystems do not have functions in any sense that goes beyond a mere description of a causal contribution. We recommend the terms 'ecosystem function' and 'ecosystem functioning' be avoided in the ecological literature (and beyond).

3.
Glob Chang Biol ; 29(13): 3806-3820, 2023 07.
Article in English | MEDLINE | ID: mdl-36946867

ABSTRACT

Blue carbon ecosystems (BCEs) are important nature-based solutions for climate change-mitigation. However, current debates question the reliability and contribution of BCEs under future climatic-scenarios. The answer to this question depends on ecosystem processes driving carbon-sequestration and -storage, such as primary production and decomposition, and their future rates. We performed a global meta-analysis on litter decomposition rate constants (k) in BCEs and predicted changes in carbon release from 309 studies. The relationships between k and climatic factors were examined by extracting remote-sensing data on air temperature, sea-surface temperature, and precipitation aligning to the decomposition time of each experiment. We constructed global numerical models of litter decomposition to forecast k and carbon release under different scenarios. The current k averages at 27 ± 3 × 10-2 day-1 for macroalgae were higher than for seagrasses (1.7 ± 0.2 × 10-2 day-1 ), mangroves (1.6 ± 0.1 × 10-2 day-1 ) and tidal marshes (5.9 ± 0.5 × 10-3 day-1 ). Macrophyte k increased with both air temperature and precipitation in intertidal BCEs and with sea surface temperature for subtidal seagrasses. Above a temperature threshold for vascular plant litter at ~25°C and ~20°C for macroalgae, k drastically increased with increasing temperature. However, the direct effect of high temperatures on k are obscured by other factors in field experiments compared with laboratory experiments. We defined "fundamental" and "realized" temperature response to explain this effect. Based on relationships for realized temperature response, we predict that proportions of decomposed litter will increase by 0.9%-5% and 4.7%-28.8% by 2100 under low- (2°C) and high-warming conditions (4°C) compared to 2020, respectively. Net litter carbon sinks in BCEs will increase due to higher increase in litter C production than in decomposition by 2100 compared to 2020 under RCP 8.5. We highlight that BCEs will play an increasingly important role in future climate change-mitigation. Our findings can be leveraged for blue carbon accounting under future climate change scenarios.


Subject(s)
Climate Change , Ecosystem , Carbon , Reproducibility of Results , Wetlands
4.
Biol Bull ; 241(2): 123-139, 2021 10.
Article in English | MEDLINE | ID: mdl-34706208

ABSTRACT

AbstractTrue mangroves are vascular plants (Tracheophyta) that evolved into inhabiting the mid and upper intertidal zone of tropical and subtropical soft-sediment coasts around the world. While several dozens of species are known from the Indo-West Pacific region, the Atlantic-East Pacific region is home to only a mere dozen of true mangrove species, most of which are rare. Mangrove trees can form dense monospecific or multispecies stands that provide numerous ecosystem services. Despite their eminent socioecological and socioeconomic relevance and the plethora of studies on mangroves, many details of the ecology of mangrove ecosystems remain unknown; and our knowledge about general ecological principles in mangrove ecosystems is scarce. For instance, the functional trait concept has hardly been applied to mangroves. Here we provide an inventory of 28 quantitative and 8 qualitative functional traits of true mangrove species and stipulate some insight into how these traits may drive ecosystem structure and processes. The differentiation between true mangroves and mangrove associates, which can dwell inside as well as outside mangrove forests, is reflected by a number of leaf traits. Thus, true mangroves exhibit lower specific leaf area, lower leaf N content, and lower K∶Na ratio, and higher leaf succulence, higher Na and Cl content, and higher osmolality than mangrove associates. True mangrove species that form pure stands produce larger leaves and exhibit higher N content per leaf area, higher leaf K and Ca content, greater maximum plant height, longer propagules, and lower root porosity than more sporadic species. The species-specific expression of most traits does not reflect the species' position along intertidal gradients, suggesting that adaptation to tidal inundation does not explain these traits. Rather, many of the traits studied herein exhibit strong phylogenetic signals in true mangroves. Thus, wood density is high in most species of the Rhizophoraceae, irrespective of their habitat or maximum height. On the other hand, species of the genus Sonneratia exhibit low wood density and do not grow taller than 20 m. Some leaf traits of true mangroves are more like those of plants from drier environments, reflecting the perception that a saline environment creates physiological drought stress. Along the same line, most true mangrove species exhibit sclerophyllous leaf traits. The few major mangrove tree species of the Atlantic-East Pacific are as distinct from each other, with regard to some traits, as are the many mangrove species of the Indo-West Pacific. We hypothesize that this phenomenon explains the similarly high biomass of mangrove forests in both the species-rich Indo-West Pacific and the species-poor Atlantic-East Pacific.


Subject(s)
Ecosystem , Rhizophoraceae , Phylogeny , Species Specificity , Wetlands
5.
Sci Rep ; 11(1): 17972, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34504118

ABSTRACT

Carbon dioxide is the most abundant, non-condensable gas in volcanic systems, released into the atmosphere through either diffuse or advective fluid flow. The emission of substantial amounts of CO2 at Earth's surface is not only controlled by volcanic plumes during periods of eruptive activity or fumaroles, but also by soil degassing along permeable structures in the subsurface. Monitoring of these processes is of utmost importance for volcanic hazard analyses, and is also relevant for managing geothermal resources. Fluid-bearing faults are key elements of economic value for geothermal power generation. Here, we describe for the first time how sensitively and quickly natural gas emissions react to changes within a deep hydrothermal system due to geothermal fluid reinjection. For this purpose, we deployed an automated, multi-chamber CO2 flux monitoring system within the damage zone of a deep-rooted major normal fault in the Los Humeros Volcanic Complex (LHVC) in Mexico and recorded data over a period of five months. After removing the atmospheric effects on variations in CO2 flux, we calculated correlation coefficients between residual CO2 emissions and reinjection rates, identifying an inverse correlation of ρ = - 0.51 to - 0.66. Our results indicate that gas emissions respond to changes in reinjection rates within 24 h, proving an active hydraulic communication between the hydrothermal system and Earth's surface. This finding is a promising indication not only for geothermal reservoir monitoring but also for advanced long-term volcanic risk analysis. Response times allow for estimation of fluid migration velocities, which is a key constraint for conceptual and numerical modelling of fluid flow in fracture-dominated systems.

6.
Ecol Evol ; 11(14): 9642-9651, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306650

ABSTRACT

Decomposition of vegetal detritus is one of the most fundamental ecosystem processes. In complex landscapes, the fate of litter of terrestrial plants may depend on whether it ends up decomposing in terrestrial or aquatic conditions. However, (1) to what extent decomposition rates are controlled by environmental conditions or by detritus type, and (2) how important the composition of the detritivorous fauna is in mediating decomposition in different habitats, remain as unanswered questions. We incubated two contrasting detritus types in three distinct habitat types in Coastal Georgia, USA, to test the hypotheses that (1) the litter fauna composition depends on the habitat and the litter type available, and (2) litter mass loss (as a proxy for decomposition) depends on environmental conditions (habitat) and the litter type. We found that the abundance of most taxa of the litter fauna depends primarily on habitat. Litter type became a stronger driver for some taxa over time, but the overall faunal composition was only weakly affected by litter type. Decomposition also depends strongly on habitat, with up to ca. 80% of the initial detrital mass lost over 25 months in the marsh and forest habitats, but less than 50% lost in the creek bank habitat. Mass loss rates of oak versus pine litter differed initially but converged within habitat types within 12 months. We conclude that, although the habitat type is the principle driver of the community composition of the litter fauna, litter type is a significant driver of litter mass loss in the early stages of the decomposition process. With time, however, litter types become more and more similar, and habitat becomes the dominating factor in determining decomposition of older litter. Thus, the major driver of litter mass loss changes over time from being the litter type in the early stages to the habitat (environmental conditions) in later stages.

7.
Nat Commun ; 12(1): 3875, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162891

ABSTRACT

The conservation of ecosystems and their biodiversity has numerous co-benefits, both for local societies and for humankind worldwide. While the co-benefit of climate change mitigation through so called blue carbon storage in coastal ecosystems has raised increasing interest in mangroves, the relevance of multifaceted biodiversity as a driver of carbon storage remains unclear. Sediment salinity, taxonomic diversity, functional diversity and functional distinctiveness together explain 69%, 69%, 27% and 61% of the variation in above- and belowground plant biomass carbon, sediment organic carbon and total ecosystem carbon storage, respectively, in the Sundarbans Reserved Forest. Functional distinctiveness had the strongest explanatory power for carbon storage, indicating that blue carbon in mangroves is driven by the functional composition of diverse tree assemblages. Protecting and restoring mangrove biodiversity with site-specific dominant species and other species of contrasting functional traits would have the co-benefit of maximizing their capacity for climate change mitigation through increased carbon storage.


Subject(s)
Avicennia/metabolism , Biodiversity , Carbon Sequestration , Carbon/metabolism , Conservation of Natural Resources/methods , Algorithms , Avicennia/growth & development , Biomass , Ecosystem , Geologic Sediments , Models, Theoretical
9.
Oecologia ; 195(4): 843-858, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33559746

ABSTRACT

Leaf litter and its breakdown products represent an important input of organic matter and nutrients to mangrove sediments and adjacent coastal ecosystems. It is commonly assumed that old-grown stands with mature trees contribute more to the permanent sediment organic matter pool than younger stands. However, neither are interspecific differences in leaf decay rates taken into account in this assumption nor is our understanding of the underlying mechanisms or drivers of differences in leaf chemistry sufficient. This study examines the influence of different plant species and ontogenetic stage on the microbial decay of mangrove leaf litter. A litterbag experiment was conducted in the Matang Mangrove Forest Reserve, Malaysia, to monitor leaf litter mass loss, and changes in leaf litter chemistry and microbial enzyme activity. Four mangrove species of different morphologies were selected, namely the trees Rhizophora apiculata and Bruguiera parviflora, the fern Acrostichum aureum and the shrub Acanthus ilicifolius. Decay rates of mangrove leaf litter decreased from A. ilicifolius to R. apiculata to B. parviflora to A. aureum. Leaf litter mass, total phenolic content, protein precipitation capacity and phenol oxidase activity were found to decline rapidly during the early stage of decay. Leaf litter from immature plants differed from that of mature plants in total phenolic content, phenolic signature, protein precipitating capacity and protease activity. For R. apiculata, but not of the other species, leaf litter from immature plants decayed faster than the litter of mature plants. The findings of this study advance our understanding of the organic matter dynamics in mangrove stands of different compositions and ages and will, thus, prove useful in mangrove forest management.


Subject(s)
Ecosystem , Rhizophoraceae , Malaysia , Plant Leaves , Trees
10.
Sci Rep ; 10(1): 20671, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244124

ABSTRACT

The relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16-27%) from highly dynamic anthropogenic combustion-related contributions (21-54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.

11.
mSystems ; 5(5)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33082281

ABSTRACT

Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Such an effort calls for a multidisciplinary and collaborative approach, involving chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant scientists, conservation biologists, and stakeholders, and it requires standardized methods to support reproducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is focused around three urgent priorities and three approaches for advancing mangrove microbiome research.

12.
Mar Environ Res ; 151: 104750, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31253435

ABSTRACT

The establishment and wellbeing of seedlings governs the spread and survival of mangrove forests. Eutrophication and global warming are major challenges endangering mangrove ecosystem integrity. How these stressors affect seedling growth is not well understood. In a mesocosm experiment we grew mangrove seedlings in temperature-controlled chambers and investigated single and combined effects of temperature (23 and 33 °C), organic matter and dissolved nutrients on seedling trait morphology. Seedling survival was lowest in organic matter treatments. Combined effects of temperature and nutrients caused significant differences in root morphology with fewer but longer and thicker 3rd order roots, fewer 2nd and no 1st order roots in nutrient-enriched (23 °C) compared to non-enriched treatments (33 °C). Our results indicate these seedlings are less resilient to withstand their dynamic environment, in which they must settle and establish, due to lower root complexity. Mangrove ecosystems are negatively affected by global and local stresses; if new seedlings, which support forest recovery, are also affected then this amplifies stresses.


Subject(s)
Avicennia/physiology , Ecosystem , Seedlings , Nutrients , Temperature , Wetlands
14.
Ecol Evol ; 8(14): 7079-7093, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30073069

ABSTRACT

Population declines in shark species have been reported on local and global scales, with overfishing, habitat destruction and climate change posing severe threats. The lack of species-specific baseline data on ecology and distribution of many sharks, however, makes conservation measures challenging. Here, we present a fisheries-independent shark survey from the Fiji Islands, where scientific knowledge on locally occurring elasmobranchs is largely still lacking despite the location's role as a shark hotspot in the Pacific. Juvenile shark abundance in the fishing grounds of the Ba Estuary (north-western Viti Levu) was assessed with a gillnet- and longline-based survey from December 2015 to April 2016. A total of 103 juvenile sharks identified as blacktip Carcharhinus limbatus (n = 57), scalloped hammerhead Sphyrna lewini (n = 35), and great hammerhead Sphyrna mokarran (n = 11) sharks were captured, tagged, and released. The condition of umbilical scars (68% open or semihealed), mean sizes of individuals (±SD) (C. limbatus: 66.5 ± 3.8 cm, S. lewini: 51.8 ± 4.8 cm, S. mokarran 77.4 ± 2.8 cm), and the presence of these species over recent years (based on fishermen interviews), suggest that the Ba Estuary area is a critical habitat for multiple species that are classified as "Near Threatened" or "Endangered." Specifically, the area likely acts as a parturition ground over the studied period, and potentially as a subsequent nursery area. We identified subareas of high abundance and found that temperature, salinity and depth acted as small-scale environmental drivers of shark abundance. The data suggests a tendency for species-specific spatial use, both horizontally (i.e., between sampling areas) and vertically (i.e., across the water column). These results enhance the understanding of shark ecology in Fiji and provide a scientific basis for the implementation of local conservation strategies that contribute to the protection of these threatened species.

15.
Pedobiologia (Jena) ; 63: 1-7, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29129942

ABSTRACT

The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia - Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise.

16.
Biodivers Data J ; (5): e22089, 2017.
Article in English | MEDLINE | ID: mdl-29362554

ABSTRACT

BACKGROUND: Plant traits have been used extensively in ecology. They can be used as proxies for resource-acquisition strategies and facilitate the understanding of community structure and ecosystem functioning. However, many reviews and comparative analysis of plant traits do not include mangroves plants, possibly due to the lack of quantitative information available in a centralised form. NEW INFORMATION: Here a dataset is presented with 2364 records of traits of "true mangroves" species, gathered from 88 references (published articles, books, theses and dissertations). The dataset contains information on 107 quantitative traits and 18 qualitative traits for 55 species of "true mangroves" (sensu Tomlinson 2016). Most traits refer to components of living trees (mainly leaves), but litter traits were also included.

17.
Front Microbiol ; 7: 1472, 2016.
Article in English | MEDLINE | ID: mdl-27721806

ABSTRACT

Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g., cellulose or lignins). If this were the case, then (i) the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii) these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e., Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum, and Rhabdochlamydia porcellionis), while others are well-known intracellular pathogens (Rickettsiella spp.) or reproductive parasites (Wolbachia sp.). Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host populations, suggesting an important share of environmental microbes in the host-associated microbiota. In this review, we synthesize our current knowledge on the terrestrial isopod microbiome and identify future directions to (i) fully understand the functional roles of particular bacteria (both intracellular or intestinal symbionts and environmental gut passengers), and (ii) whether and how the host-associated microbiota could influence the performance of terrestrial isopods as keystone species in soil ecosystems.

18.
Curr Opin Chem Biol ; 29: 108-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26583519

ABSTRACT

Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.


Subject(s)
Biocatalysis , Lignin/metabolism , Amino Acid Sequence , Animals , Archaea/chemistry , Archaea/enzymology , Archaea/metabolism , Bacteria/chemistry , Bacteria/enzymology , Bacteria/metabolism , Fungi/chemistry , Fungi/enzymology , Fungi/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Models, Molecular , Molecular Sequence Data , Polymerization , Sequence Alignment
19.
Oecologia ; 178(4): 999-1015, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25783486

ABSTRACT

Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community differed significantly between sexes, but habitat effects were greater than sex effects. By combining multiple measures of feeding ecology, we demonstrate that Armases exhibits sex-specific habitat choice and food preference. By using both coastal forest and saltmarsh habitats, but feeding predominantly in the latter, they possibly act as a key biotic vector of spatial subsidies across habitat borders. The degree of contributing to fluxes of matter, nutrients and energy, however, depends on their sex, indicating that changes in population structure would likely have profound effects on ecosystem connectivity and functioning.


Subject(s)
Brachyura , Diet , Feeding Behavior , Forests , Predatory Behavior , Wetlands , Animals , Bacteria , Digestion , Female , Male , Movement , Plants
20.
Zool Stud ; 54: e17, 2015.
Article in English | MEDLINE | ID: mdl-31966104

ABSTRACT

BACKGROUND: Although wetlands were remarkable habitats with their fauna and flora diversity, few studies have been devoted to the study of amphipod distribution in this type of environment. To study both qualitatively and quantitatively amphipod community, surveys were conducted during the spring season in ten coastal lagoons ranging from subhumid to arid bioclimatic stage. At each station, eight quadrats of 50 × 50 cm were randomly placed. Amphipods were preserved in alcohol 70°C. In the laboratory, the specimens collected were identified and counted. Meanwhile, analyses of organic matter, particle size, and heavy metals from the soil taken from each station were made. RESULTS: A total of 1,340 specimens of amphipods were collected, and eight species belonging to Talitridae family were identified. Species richness ranges from one species collected in the supralittoral zone of El Bcherliya (Ghar El Melh lagoon) and eight species in the supralittoral zone of Bizerte lagoon. In this last station, the relative abundance of amphipods was significantly higher (36.04%, N = 483). In addition, the diversity indices of Simpson, Shannon-Weaver, and equitability shows that the highest species diversity characterizes this same station while the community was more balanced in opposite El Boughaz (Ghar El Melh lagoon) (J″ =0.996). CONCLUSIONS: Thespatial distribution of different amphipod species depends on edaphic (heavy metals, granulometry, organic matter) and climatic (temperature, humidity) factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...