Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 26(3): 437-445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430522

ABSTRACT

Roadside vegetation in Central Europe is mostly species-poor and dominated by a few grass species. Hemiparasitic plant species, including Rhinanthus spp., might effectively restrict grass growth, thereby making space for light-dependent herb species. Despite the significance of abiotic site conditions for plant establishment in general, their effects on Rhinanthus establishment are less well known. We investigated combined effects of water availability, litter amount and seed position within litter on Rhinanthus seedling emergence and growth. Two parallel greenhouse experiments were conducted with R. angustifolius and R. minor. In these, we tested the impact of 200 or 400 g litter·m-2 with seeds sown beneath or on top of a litter layer under constantly humid or intermittently dry conditions on seedling emergence and biomass production of Rhinanthus. Presence of litter positively affected Rhinanthus seedling emergence when sown beneath the litter layer and reduced negative effects of water deficiency. Sowing beneath a litter layer increased seedling emergence by 157%, with similar effects at 200 and 400 g litter·m-2. Water level did not affect biomass production. Compared to R. minor, R. angustifolius had higher mean biomass, and its seedlings emerged earlier and in higher numbers. Our results indicate that Rhinanthus spp. react similarly to litter as non-hemiparasitic plant species from temperate grasslands. Litter presence positively influenced Rhinanthus seedling emergence and growth under intermittently dry conditions. Its hemiparasitic characteristics might reduce drought impacts on biomass production. To ensure seed contact with the soil surface, seeds should be sown when no litter is present, or mulching should occur post-sowing.


Subject(s)
Orobanchaceae , Seedlings , Droughts , Plants , Seeds , Poaceae , Water , Germination
2.
Plant Biol (Stuttg) ; 25(7): 1046-1057, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703534

ABSTRACT

Macrocyclic lactone anthelmintics are widely used to control invertebrate pests in livestock, such as sheep. While anthelmintic effects on non-target animals, such as dung-dwelling insects, are well studied, effects on seed germination are largely unknown. Seeds can come into contact with anthelmintics either during passage through the gastro-intestinal tract of grazing animals or when anthelmintics are excreted with their dung into the environment, which may result in changed germination patterns. We used four commonly applied macrocyclic lactones to assess their effects on germination: moxidectin, ivermectin, abamectin and doramectin as pure substances; moxidectin and ivermectin also in formulated form. We tested these pharmaceuticals on 17 different temperate grassland species from five plant families. Seeds were exposed to three concentrations of macrocyclic lactones (0.1, 1.0 and 10.0 mg·l-1 ) under controlled conditions, and germination was assessed over a 6-week period. From these data, we calculated germination percentage, mean germination time and germination synchrony. Most of the tested species were significantly affected in germination percentage and/or mean germination time by at least one of the tested pharmaceuticals, with formulated moxidectin having the largest impact. In general, the effects found were species- and pharmaceutical-specific. While formulated substances generally reduced germination percentage and increased mean germination time, pure substances increased germination percentage. Synchrony showed less clear patterns in all pharmaceuticals. Although effect size and sign varied between species, our study shows that non-target effects of macrocyclic lactones commonly occur in terrestrial plants. This may impede successful seed exchange between habitats via sheep, and even translate into profound changes to grazed ecosystems.


Subject(s)
Anthelmintics , Lactones , Animals , Sheep , Lactones/pharmacology , Ivermectin/pharmacology , Germination , Grassland , Ecosystem , Seeds , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Plants , Pharmaceutical Preparations , Feces
SELECTION OF CITATIONS
SEARCH DETAIL
...