Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Trends Pharmacol Sci ; 43(9): 703-705, 2022 09.
Article in English | MEDLINE | ID: mdl-35282893

ABSTRACT

The need for new coronavirus disease 2019 (COVID-19) therapeutic strategies continues, especially as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerge. Zhang and colleagues elegantly engineered a mutant angiotensin-converting enzyme 2 (ACE2) that competitively binds SARS-CoV-2 spike protein, reduces viral uptake by human lung cells, and ameliorates SARS-CoV-2-induced lung injury in mice expressing human ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/prevention & control , Humans , Mice , Protein Engineering , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
2.
Crit Care Clin ; 37(4): 777-793, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34548133

ABSTRACT

Reports examining lung histopathology in coronavirus disease 2019 (COVID-19) infection provide an essential body of information for clinicians and investigators. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced lung injury is complex, involving the airways, alveoli, and pulmonary vessels. Although no anatomic marker is specific, the signature histologic lesion is diffuse alveolar damage (DAD). The biological and molecular mechanisms that drive this pattern of injury are unknown, and the relationship of SARS-CoV-2-induced DAD to physiologic alterations and clinical outcomes in COVID-19-associated acute respiratory distress syndrome is undefined. Additional histologic patterns that may be variant phenotypes have been reported.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung , Respiratory Distress Syndrome/etiology , SARS-CoV-2
3.
J Neuroinflammation ; 18(1): 60, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632243

ABSTRACT

BACKGROUND: The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. METHODS: Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1ß, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and ß-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. RESULTS: Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. CONCLUSION: These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter.


Subject(s)
Brain/immunology , Prenatal Exposure Delayed Effects/immunology , Sepsis/immunology , Animals , Behavior, Animal , Brain/metabolism , Cognitive Dysfunction/etiology , Female , Inflammation , Mice , Motor Activity/physiology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Sepsis/complications , Synapses/metabolism
4.
J Thromb Haemost ; 19(5): 1319-1330, 2021 05.
Article in English | MEDLINE | ID: mdl-33587773

ABSTRACT

BACKGROUND: Heparanase (HPSE) is the only known mammalian enzyme that can degrade heparan sulfate. Heparan sulfate proteoglycans are essential components of the glycocalyx, and maintain physiological barriers between the blood and endothelial cells. HPSE increases during sepsis, which contributes to injurious glyocalyx degradation, loss of endothelial barrier function, and mortality. OBJECTIVES: As platelets are one of the most abundant cellular sources of HPSE, we sought to determine whether HPSE expression and activity increases in human platelets during clinical sepsis. We also examined associations between platelet HPSE expression and clinical outcomes. PATIENTS/METHODS: Expression and activity of HPSE was determined in platelets isolated from septic patients (n = 59) and, for comparison, sex-matched healthy donors (n = 46) using complementary transcriptomic, proteomic, and functional enzymatic assays. Septic patients were followed for the primary outcome of mortality, and clinical data were captured prospectively for septic patients. RESULTS: The mRNA expression of HPSE was significantly increased in platelets isolated from septic patients. Ribosomal footprint profiling, followed by [S35] methionine labeling assays, demonstrated that HPSE mRNA translation and HPSE protein synthesis were significantly upregulated in platelets during sepsis. While both the pro- and active forms of HPSE protein increased in platelets during sepsis, only the active form of HPSE protein significantly correlated with sepsis-associated mortality. Consistent with transcriptomic and proteomic upregulation, HPSE enzymatic activity was also increased in platelets during sepsis. CONCLUSIONS: During clinical sepsis HPSE, translation, and enzymatic activity are increased in platelets. Increased expression of the active form of HPSE protein is associated with sepsis-associated mortality.


Subject(s)
Blood Platelets/enzymology , Glucuronidase/metabolism , Sepsis , Endothelial Cells , Glucuronidase/genetics , Humans , Proteomics
5.
J Leukoc Biol ; 108(4): 1293-1306, 2020 10.
Article in English | MEDLINE | ID: mdl-32663907

ABSTRACT

Dengue is characterized as one of the most important arthropod-borne human viral diseases, representing a public health problem. Increased activation of immune cells is involved in the progression of infection to severe forms. Recently, our group demonstrated the contribution of platelet-monocyte interaction to inflammatory responses in dengue, adding to evolving evidence that platelets have inflammatory functions and can regulate different aspects of innate immune responses. Furthermore, stimuli-specific-activated platelets can promote phenotypic changes and metabolic reprogramming in monocytes. Thus, this study aimed to evaluate the roles of dengue virus (DENV)-activated platelets on immunometabolic reprogramming of monocytes in vitro, focusing on lipid droplet (LD) biogenesis. We demonstrated that platelets exposed to DENV in vitro form aggregates with monocytes and signal to LD formation and CXCL8/IL-8, IL-10, CCL2, and PGE2 secretion. Pharmacologic inhibition of LD biogenesis prevents PGE2 secretion, but not CXCL8/IL-8 release, by platelet-monocyte complexes. In exploring the mechanisms involved, we demonstrated that LD formation in monocytes exposed to DENV-activated platelets is partially dependent on platelet-produced MIF. Additionally, LD formation is higher in monocytes, which have platelets adhered on their surface, suggesting that beyond paracrine signaling, platelet adhesion is an important event in platelet-mediated modulation of lipid metabolism in monocytes. Together, our results demonstrate that activated platelets aggregate with monocytes during DENV infection and signal to LD biogenesis and the secretion of inflammatory mediators, which may contribute to dengue immunopathogenesis.


Subject(s)
Blood Platelets/immunology , Cytokines/immunology , Dengue Virus/immunology , Dengue/immunology , Lipid Droplets/immunology , Monocytes/immunology , Signal Transduction/immunology , Blood Platelets/pathology , Dengue/pathology , Female , Humans , Lipid Droplets/pathology , Male , Monocytes/pathology
6.
Malar J ; 19(1): 234, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32611348

ABSTRACT

BACKGROUND: Malaria-triggered lung injury can occur in both severe and non-severe cases. Platelets may interact with parasitized erythrocytes, leukocytes and endothelium. These interactions can lead to microvessel obstructions and induce release of inflammatory mediators. Induction of the haem oxygenase enzyme is important in the host's response to free haem and to several other molecules generated by infectious or non-infectious diseases. In addition, an important role for the haem oxygenase-1 isotype has been demonstrated in experimental cerebral malaria and in clinical cases. Therefore, the present work aims to determine the influence of haem oxygenase in thrombocytopaenia and acute pulmonary injury during infection with Plasmodium berghei strain NK65. METHODS: C57BL/6 mice were infected with P. berghei and analysed 7-10 days post-infection. For each experiment, Cobalt Protoporphyrin IX/CoPPIX or saline were administered. Bronchoalveolar lavage fluid was used for total and differential leukocyte count and for protein measurement. Lungs were used for histological analyses or for analysis of cytokines and western blotting. The lung permeability was analysed by Evans blue dye concentration. Platelet-leukocyte aggregate formation was assayed using the flow cytometer. RESULTS: Plasmodium berghei NK65 infection generated an intense lung injury, with increased levels of inflammatory mediators, oedema, and cell migration into the lung. Plasmodium berghei infection was also accompanied by marked thrombocytopaenia and formation of platelet-leukocyte aggregates in peripheral blood. Treatment with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) modified the inflammatory response but did not affect the evolution of parasitaemia. Animals treated with CoPPIX showed an improvement in lung injury, with decreased inflammatory infiltrate in the lung parenchyma, oedema and reduced thrombocytopaenia. CONCLUSION: Data here presented suggest that treatment with CoPPIX inducer leads to less severe pulmonary lung injury and thrombocytopaenia during malaria infection, thus increasing animal survival.


Subject(s)
Acute Lung Injury/drug therapy , Heme Oxygenase-1/pharmacology , Malaria/complications , Membrane Proteins/pharmacology , Protective Agents/pharmacology , Thrombocytopenia/drug therapy , Acute Lung Injury/etiology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Female , Leukocyte Count , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Plasmodium berghei/physiology , Thrombocytopenia/etiology
7.
J Clin Invest ; 130(4): 1632-1634, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32175918

ABSTRACT

Cystic fibrosis (CF) is a multisystem disorder, but progressive inflammatory lung disease causes the greatest burden of morbidity and death. Recent translational and mechanistic studies of samples from patients, and observations in animal models, indicate that platelets may drive lung injury and contribute to dysregulated host defense in CF lung disease. In this issue of the JCI, Ortiz-Muñoz and Yu et al. explored the role that the cystic fibrosis transmembrane conductance regulator (CFTR) plays in platelet-related inflammation. The authors used mouse and human model systems to show that CFTR dysfunction in platelets increased calcium entry though the transient receptor potential cation channel 6 (TRPC6), causing hyperactivation and consequent experimental lung inflammation. The study persuasively suggests that platelets are critical thromboinflammatory effector cells in CF lung disease. In the context of platelet-related organ injury seen in a variety of other diseases and syndromes, platelets may also contribute to nonpulmonary manifestations and comorbidities of CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Animals , Blood Platelets/metabolism , Humans , Ion Transport , Lung/metabolism , Mice
8.
PLoS One ; 14(12): e0224610, 2019.
Article in English | MEDLINE | ID: mdl-31869339

ABSTRACT

Malaria is an infectious disease of major worldwide clinical importance that causes a variety of severe, or complicated, syndromes including cerebral malaria, which is often fatal. Leukocyte integrins are essential for host defense but also mediate physiologic responses of the innate and adaptive immune systems. We previously showed that targeted deletion of the αD subunit (αD-/-) of the αDß2 integrin, which is expressed on key leukocyte subsets in mice and humans, leads to absent expression of the integrin heterodimer on murine macrophages and reduces mortality in mice infected with Plasmodium berghei ANKA (P. berghei ANKA). To further identify mechanisms involved in the protective effect of αD deletion in this model of severe malaria we examined wild type C57BL/6 (WT) and αD-/- mice after P. berghei ANKA infection and found that vessel plugging and leukocyte infiltration were significantly decreased in the brains of αD-/- animals. Intravital microscopy demonstrated decreased rolling and adhesion of leukocytes in cerebral vessels of αD-/- mice. Flow cytometry analysis showed decreased T-lymphocyte accumulation in the brains of infected αD-/- animals. Evans blue dye exclusion assays demonstrated significantly less dye extravasation in the brains of αD-/- mice, indicating preserved blood-brain barrier integrity. WT mice that were salvaged from P. berghei ANKA infection by treatment with chloroquine had impaired aversive memory, which was not observed in αD-/- mice. We conclude that deletion of integrin αDß2 alters the natural course of experimental severe malaria, demonstrating previously unrecognized activities of a key leukocyte integrin in immune-inflammatory responses that mediate cerebral involvement.


Subject(s)
CD11 Antigens/metabolism , Integrin alpha Chains/metabolism , Malaria/physiopathology , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Edema/metabolism , Brain Edema/physiopathology , CD11 Antigens/physiology , Chloroquine/metabolism , Disease Models, Animal , Inflammation/metabolism , Integrin alpha Chains/physiology , Integrins/immunology , Integrins/metabolism , Leukocyte Count , Leukocytes/metabolism , Leukocytes/physiology , Macrophages/metabolism , Malaria/genetics , Malaria, Cerebral/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plasmodium berghei/metabolism
9.
Blood ; 134(12): 911-923, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31366617

ABSTRACT

There is increasing recognition that platelets have a functional role in the pathophysiology of sepsis, though this role has not been precisely defined. Whether sepsis alters the human platelet transcriptome and translational landscape has never been established. We used parallel techniques of RNA sequencing and ribosome footprint profiling to interrogate the platelet transcriptome and translatome in septic patients and healthy donors. We identified 1806 significantly differentially expressed (false discovery rate <0.05) transcripts in platelets from septic patients. Platelet translational events during sepsis were also upregulated. To explore the relevance of a murine model of sepsis, cecal ligation and puncture (CLP), we compared sepsis-induced changes in platelet gene expression between septic patients and mice subjected to CLP. Platelet transcriptional (ρ = 0.42, P = 3.2 × 10-285) and translational (ρ = 0.65, P = 1.09 × 10-56) changes were significantly correlated between septic patients and mice. We focused on ITGA2B, tracking and validating the expression, regulation, and functional impact of changes in ITGA2B during sepsis. Increased ITGA2B was identified in bone marrow megakaryocytes within 24 hours of sepsis onset. Subsequent increases in ITGA2B were seen in circulating platelets, suggesting dynamic trafficking of the messenger RNA. Transcriptional changes in ITGA2B were accompanied by de novo protein synthesis of αIIb and integrin αIIbß3 activation. Increased αIIb was associated with mortality in humans and mice. These findings provide previously unrecognized evidence that human and murine sepsis similarly alters the platelet transcriptional and translational landscape. Moreover, ITGA2B is upregulated and functional in sepsis due to trafficking from megakaryocytes and de novo synthesis in platelets and is associated with increased mortality.


Subject(s)
Blood Platelets/metabolism , Sepsis/genetics , Sepsis/metabolism , Animals , Blood Platelets/pathology , Blood Proteins/analysis , Blood Proteins/genetics , Blood Proteins/metabolism , Case-Control Studies , Female , Gene Expression Profiling , Humans , Male , Mice , Protein Biosynthesis , Proteome/analysis , Proteomics , Sepsis/blood , Sepsis/pathology , Severity of Illness Index , Transcription, Genetic , Transcriptome
10.
Sci Rep ; 9(1): 7096, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068600

ABSTRACT

HIV-infected subjects under virological control still exhibit a persistent proinflammatory state. Thus, chronic HIV infection changes the host homeostasis towards an adapted immune response that may affect the outcome of coinfections. However, little is known about the impact of HIV infection on inflammatory amplification and clinical presentation in dengue. Platelets have been shown to participate in immune response in dengue and HIV. We hypothesized that altered platelet responses in HIV-infected subjects may contribute to altered inflammatory milieu and disease progression in dengue. We prospectively followed a cohort of 84 DENV-infected patients of whom 29 were coinfected with HIV under virological control. We report that dengue and HIV coinfection progress with reduced inflammation and milder disease progression with lower risk of vascular instability. Even though the degree of thrombocytopenia and platelet activation were similar between dengue-infected and HIV plus dengue-coinfected patients, plasma levels of the platelet-derived chemokines RANTES/CCL5 and PF4/CXCL4 were lower in coinfection. Consistently, platelets from coinfected patients presented defective secretion of the stored-chemokines PF4 and RANTES, but not newly synthesized IL-1ß, when cultured ex vivo. These data indicate that platelets from HIV-infected subjects release lower levels of chemokines during dengue illness, which may contribute to milder clinical presentation during coinfection.


Subject(s)
Blood Platelets/metabolism , Coinfection/immunology , Dengue Virus/genetics , Dengue/immunology , HIV Infections/immunology , HIV-1 , Platelet Activation/immunology , Adult , Antirheumatic Agents/therapeutic use , Chemokine CCL5/blood , Coinfection/virology , Dengue/virology , Female , Follow-Up Studies , Genome, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , Humans , Inflammation/immunology , Interleukin-1beta/blood , Male , Middle Aged , Platelet Factor 4/blood , Prospective Studies
11.
Pediatr Res ; 86(1): 55-62, 2019 07.
Article in English | MEDLINE | ID: mdl-30965356

ABSTRACT

BACKGROUND: Dysregulated inflammation leads to morbidity and mortality in neonates. Neutrophil-mediated inflammation can cause inflammatory tissue damage. The mammalian target of rapamycin (mTOR) pathway governs IL-6Rα protein expression in human neutrophils. Shed IL-6Rα then participates in trans-signaling of IL-6/IL-6Rα to cells not otherwise sensitive to IL-6. Signaling to endothelial cells triggers efferocytosis where macrophages limit persistent inflammation by phagocytizing neutrophils. We hypothesized that preterm neonatal PMNs fail to synthesize IL-6Rα due to alterations in mTOR signaling. METHODS: We studied IL-6Rα expression, PAF receptor expression, and mTOR signaling in plasma and PAF-stimulated PMNs isolated from newborn infants and healthy adults using ELISA, real-time RT-PCR, western blotting, flow cytometry, and immunocytochemistry with phospho-specific antibodies. RESULTS: Compared to healthy adults, plasma from neonates contains significantly less soluble IL-6Rα. IL-6Rα mRNA expression in PAF-stimulated PMNs does not differ between neonates and adults, but IL-6Rα protein expression is decreased in preterm neonatal PMNs. Rapamycin, an mTOR inhibitor, blocks IL-6Rα protein expression. mTOR signaling following PAF stimulation is decreased in preterm neonatal PMNs. CONCLUSIONS: Preterm neonatal PMNs exhibit decreased mTOR pathway signaling leading to decreased IL-6Rα synthesis. Decreased synthesis of IL-6Rα by neonatal PMNs may result in decreased IL-6/IL-6Rα trans-signaling with prolonged inflammatory response and increased morbidity.


Subject(s)
Gene Expression Regulation , Infant, Premature , Interleukin-6/blood , Neutrophils/metabolism , Receptors, Interleukin-6/blood , TOR Serine-Threonine Kinases/blood , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Fetal Blood/metabolism , Humans , Infant, Newborn , Inflammation , Macrophages/metabolism , Middle Aged , Phagocytosis , Phosphorylation , Signal Transduction , Young Adult
12.
Nat Rev Dis Primers ; 5(1): 18, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872586

ABSTRACT

The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30-40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.


Subject(s)
Respiratory Distress Syndrome/diagnosis , Ventilator-Induced Lung Injury/complications , Angiopoietin-2/analysis , Antigens, CD/physiology , Biomarkers/analysis , Cadherins/physiology , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Glucocorticoids/therapeutic use , High-Frequency Ventilation/methods , Humans , Interleukin-8/analysis , Positive-Pressure Respiration/methods , Quality of Life/psychology , Radiography/methods , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/physiopathology , Vasodilator Agents/therapeutic use , Ventilator-Induced Lung Injury/physiopathology , von Willebrand Factor/analysis
13.
Blood ; 133(19): 2013-2026, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30723081

ABSTRACT

Evolving evidence indicates that platelets and megakaryocytes (MKs) have unexpected activities in inflammation and infection; whether viral infections upregulate biologically active, antiviral immune genes in platelets and MKs is unknown, however. We examined antiviral immune genes in these cells in dengue and influenza infections, viruses that are global public health threats. Using complementary biochemical, pharmacological, and genetic approaches, we examined the regulation and function of interferon-induced transmembrane protein 3 (IFITM3), an antiviral immune effector gene not previously studied in human platelets and MKs. IFITM3 was markedly upregulated in platelets isolated from patients during clinical influenza and dengue virus (DENV) infections. Lower IFITM3 expression in platelets correlated with increased illness severity and mortality in patients. Administering a live, attenuated DENV vaccine to healthy subjects significantly increased platelet IFITM3 expression. Infecting human MKs with DENV selectively increased type I interferons and IFITM3. Overexpression of IFITM3 in MKs was sufficient to prevent DENV infection. In naturally occurring, genetic loss-of-function studies, MKs from healthy subjects harboring a homozygous mutation in IFITM3 (rs12252-C, a common single-nucleotide polymorphism in areas of the world where DENV is endemic) were significantly more susceptible to DENV infection. DENV-induced MK secretion of interferons prevented infection of bystander MKs and hematopoietic stem cells. Thus, viral infections upregulate IFITM3 in human platelets and MKs, and IFITM3 expression is associated with adverse clinical outcomes. These observations establish, for the first time, that human MKs possess antiviral functions, preventing DENV infection of MKs and hematopoietic stem cells after local immune signaling.


Subject(s)
Immunity, Innate/immunology , Megakaryocytes/immunology , Membrane Proteins/immunology , RNA-Binding Proteins/immunology , Antiviral Agents/immunology , Dengue/immunology , Dengue Vaccines/immunology , Humans
14.
Sci Rep ; 8(1): 14999, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30301959

ABSTRACT

Cardiovascular diseases and thrombotic events became major clinical problems in the combined antiretroviral therapy (cART) era. Although the precise mechanisms behind these clinical problems have not been fully elucidated, a persistent pro-inflammatory state plays a central role. As platelets play important roles on both, thrombus formation and inflammatory/immune response, we aimed at investigating platelet function in HIV-infected subjects virologically controlled through cART. We evaluate parameters of activation, mitochondrial function and activation of apoptosis pathways in platelets from 30 HIV-infected individuals under stable cART and 36 healthy volunteers. Despite viral control achieved through cART, HIV-infected individuals exhibited increased platelet activation as indicated by P-selectin expression and platelet spreading when adhered on fibrinogen-coated surfaces. Platelets from HIV-infected subjects also exhibited mitochondrial dysfunction and activation of apoptosis pathways. Finally, thrombin stimuli induced lower levels of P-selectin translocation and RANTES secretion, but not TXA2 synthesis, in platelets from HIV-infected individuals compared to control; and labeling of platelet alpha granules showed reduced granule content in platelets from HIV-infected individuals when compared to healthy subjects. In summary, platelets derived from HIV-infected individuals under stable cART exhibit a phenotype of increased activation, activation of the intrinsic pathway of apoptosis and undermined granule secretion in response to thrombin.


Subject(s)
Antiretroviral Therapy, Highly Active/adverse effects , Cardiovascular Diseases/blood , HIV Infections/drug therapy , Inflammation/blood , Thrombosis/blood , Adult , Apoptosis/drug effects , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Chemokine CCL5/genetics , Female , HIV/pathogenicity , HIV Infections/complications , HIV Infections/genetics , HIV Infections/virology , Healthy Volunteers , Humans , Inflammation/chemically induced , Inflammation/pathology , Male , Mitochondria/genetics , Mitochondria/pathology , Monocytes , P-Selectin/genetics , Platelet Activation/drug effects , Platelet Activation/genetics , Platelet Aggregation/drug effects , Thrombin/metabolism , Thrombosis/chemically induced , Thrombosis/genetics , Thrombosis/virology
15.
Front Immunol ; 9: 1128, 2018.
Article in English | MEDLINE | ID: mdl-29881383

ABSTRACT

ß2 integrins are critical in host defense responses to invading pathogens and inflammation. Previously, we reported that genetic deficiency of integrin αDß2 in mice altered outcomes in experimental systemic infections including accelerated mortality in animals infected with Salmonella enterica serovar Typhimurium. Here, we show that deficiency of αDß2 results in impaired accumulation of leukocytes in response to peritoneal infection by S. Typhimurium, impaired pathogen clearance in vivo, defective bacterial elimination by cultured peritoneal macrophages, and enhanced pyroptosis, a cell death process triggered by Salmonella. Salmonella-infected animals deficient in αDß2 had increased levels of peritoneal cytokines in addition to other markers of pyroptosis, which may contribute to inflammatory injury and increased mortality in the context of impaired bacterial killing. These observations indicate important contributions of leukocyte integrins to the host response in experimental Salmonella infection and reveal previous activities of αDß2 in bacterial infection.


Subject(s)
CD11 Antigens/metabolism , CD18 Antigens/metabolism , Integrin alpha Chains/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella typhimurium/immunology , Animals , Cytokines/metabolism , Disease Models, Animal , Host-Pathogen Interactions/immunology , Leukocyte Count , Lipopolysaccharides/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice , Mice, Knockout , Pyroptosis/immunology , Salmonella Infections/microbiology
17.
Am J Respir Cell Mol Biol ; 59(1): 18-35, 2018 07.
Article in English | MEDLINE | ID: mdl-29553813

ABSTRACT

Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.


Subject(s)
Acute Lung Injury/blood , Acute Lung Injury/pathology , Blood Platelets/pathology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/pathology , Acute Lung Injury/drug therapy , Animals , Humans , Megakaryocytes/pathology , Phenotype , Platelet Aggregation Inhibitors/therapeutic use , Respiratory Distress Syndrome/drug therapy
18.
Arterioscler Thromb Vasc Biol ; 38(4): 801-815, 2018 04.
Article in English | MEDLINE | ID: mdl-29301786

ABSTRACT

OBJECTIVE: One source of endogenous reverse transcriptase (eRT) activity in nucleated cells is the LINE-1/L1 (long interspersed nuclear element-1), a non-LTR retrotransposon that is implicated in the regulation of gene expression. Nevertheless, the presence and function of eRT activity and LINE-1 in human platelets, an anucleate cell, has not previously been determined. APPROACH AND RESULTS: We demonstrate that human and murine platelets possess robust eRT activity and identify the source as being LINE-1 ribonucleoprotein particles. Inhibition of eRT in vitro in isolated platelets from healthy individuals or in people with HIV treated with RT inhibitors enhanced global protein synthesis and platelet activation. If HIV patients were treated with reverse transcriptase inhibitor, we found that platelets from these patients had increased basal activation. We next discovered that eRT activity in platelets controlled the generation of RNA-DNA hybrids, which serve as translational repressors. Inhibition of platelet eRT lifted this RNA-DNA hybrid-induced translational block and was sufficient to increase protein expression of target RNAs identified by RNA-DNA hybrid immunoprecipitation. CONCLUSIONS: Thus, we provide the first evidence that platelets possess L1-encoded eRT activity. We also demonstrate that platelet eRT activity regulates platelet hyperreactivity and thrombosis and controls RNA-DNA hybrid formation and identify that RNA-DNA hybrids function as a novel translational control mechanism in human platelets.


Subject(s)
Blood Platelets/enzymology , DNA/blood , Long Interspersed Nucleotide Elements , Platelet Activation , Protein Biosynthesis , RNA-Directed DNA Polymerase/blood , RNA/blood , Thrombosis/blood , Animals , Blood Platelets/drug effects , Cell Line , DNA/genetics , Disease Models, Animal , Female , HIV Infections/blood , HIV Infections/drug therapy , HIV Infections/enzymology , HIV Infections/genetics , Humans , Male , Mice, Inbred C57BL , Platelet Activation/drug effects , Protein Biosynthesis/drug effects , Pulmonary Embolism/blood , Pulmonary Embolism/enzymology , Pulmonary Embolism/genetics , RNA/genetics , RNA-Directed DNA Polymerase/genetics , Reverse Transcriptase Inhibitors/therapeutic use , Thrombosis/enzymology , Thrombosis/genetics
19.
Arterioscler Thromb Vasc Biol ; 37(10): 1819-1827, 2017 10.
Article in English | MEDLINE | ID: mdl-28775073

ABSTRACT

OBJECTIVE: Blood vessel wall damage often results in the formation of a fibrin clot that traps inflammatory cells, including monocytes. The effect of clot formation and subsequent lysis on the expression of monocyte-derived genes involved in the development and progression of ischemic stroke and other vascular diseases, however, is unknown. Determine whether clot formation and lysis regulates the expression of human monocyte-derived genes that modulate vascular diseases. APPROACH AND RESULTS: We performed next-generation RNA sequencing on monocytes extracted from whole blood clots and using a purified plasma clot system. Numerous mRNAs were differentially expressed by monocytes embedded in clots compared with unclotted controls, and IL-8 (interleukin 8) and MCP-1 (monocyte chemoattractant protein-1) were among the upregulated transcripts in both models. Clotted plasma also increased expression of IL-8 and MCP-1, which far exceeded responses observed in lipopolysaccharide-stimulated monocytes. Upregulation of IL-8 and MCP-1 occurred in a thrombin-independent but fibrin-dependent manner. Fibrinolysis initiated shortly after plasma clot formation (ie, 1-2 hours) reduced the synthesis of IL-8 and MCP-1, whereas delayed fibrinolysis was far less effective. Consistent with these in vitro models, monocytes embedded in unresolved thrombi from patients undergoing thrombectomy stained positively for IL-8 and MCP-1. CONCLUSIONS: These findings demonstrate that clots are potent inducers of monocyte gene expression and that timely fibrinolysis attenuates inflammatory responses, specifically IL-8 and MCP-1. Dampening of inflammatory gene expression by timely clot lysis may contribute to the clinically proven efficacy of fibrinolytic drug treatment within hours of stroke onset.


Subject(s)
Blood Coagulation/physiology , Chemokine CCL2/genetics , Gene Expression , Interleukin-8/genetics , Monocytes/metabolism , Stroke/genetics , Stroke/physiopathology , Chemokine CCL2/biosynthesis , Humans , Interleukin-8/biosynthesis , Stroke/drug therapy , Thrombolytic Therapy , Thrombosis/drug therapy , Thrombosis/prevention & control , Transcription, Genetic
20.
PLoS Pathog ; 13(5): e1006385, 2017 May.
Article in English | MEDLINE | ID: mdl-28542641

ABSTRACT

Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses.


Subject(s)
Blood Platelets/immunology , Dengue Virus/physiology , Dengue/immunology , Proteome/immunology , Adult , Blood Platelets/chemistry , Cohort Studies , Dengue/blood , Dengue/genetics , Dengue/virology , Dengue Virus/immunology , Female , Humans , Male , Platelet Activation , Proteome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...