Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Sci Rep ; 14(1): 15071, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956192

ABSTRACT

The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve outcomes after aneurysmal subarachnoid hemorrhage We sought to identify specific metabolites mediating these effects. Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N = 12) or HPRO + NMES (N = 12) and at 7 days. Untargeted metabolomics were performed for each plasma sample. Sparse partial least squared discriminant analysis identified metabolites differentiating each group. Correlation coefficients were calculated between each metabolite and total protein per day and muscle volume. Multivariable models determined associations between metabolites and muscle volume. Unique metabolites (18) were identified differentiating SOC from HPRO + NMES. Of these, 9 had significant positive correlations with protein intake. In multivariable models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95% CI 1.01, 1.16)] and quadricep [OR 1.08 (95% CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95% CI 1.01, 1.09)] and quadricep [OR 1.04 (95% CI 1.00, 1.07)] muscle volume. N-acetylserine and ß-hydroxyisovaleroylcarnitine were associated with preserved temporalis or quadricep volume. Metabolites defining HPRO + NMES had strong correlations with protein intake and were associated with preserved muscle volume.


Subject(s)
Subarachnoid Hemorrhage , Humans , Male , Female , Middle Aged , Subarachnoid Hemorrhage/therapy , Subarachnoid Hemorrhage/complications , Diet, High-Protein , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Metabolomics/methods , Muscular Atrophy/etiology , Electric Stimulation Therapy/methods , Aged , Metabolome , Dietary Supplements
2.
Epilepsy Behav Rep ; 25: 100645, 2024.
Article in English | MEDLINE | ID: mdl-38299124

ABSTRACT

Endotracheal intubation, frequently required during management of refractory status epilepticus (RSE), can be facilitated by anesthetic medications; however, their effectiveness for RSE control is unknown. We performed a single-center retrospective review of patients admitted to a neurocritical care unit (NCCU) who underwent in-hospital intubation during RSE management. Patients intubated with propofol, ketamine, or benzodiazepines, termed anti-seizure induction (ASI), were compared to patients who received etomidate induction (EI). The primary endpoint was clinical or electrographic seizures within 12 h post-intubation. We estimated the association of ASI on post-intubation seizure using logistic regression. A sub-group of patients undergoing electroencephalography during intubation was identified to evaluate the immediate effect of ASI on RSE. We screened 697 patients admitted to the NCCU for RSE and identified 148 intubated in-hospital (n = 90 ASI, n = 58 EI). There was no difference in post-intubation seizure (26 % (n = 23) ASI, 29 % (n = 17) EI) in the cohort, however, there was increased RSE resolution with ASI in 24 patients with electrographic RSE during intubation (ASI: 61 % (n = 11/18) vs EI: 0 % (n = 0/6), p =.016). While anti-seizure induction did not appear to affect post-intubation seizure occurrence overall, a sub-group of patients undergoing electroencephalography during intubation had a higher incidence of seizure cessation, suggesting potential benefit in an enriched population.

3.
Res Sq ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014126

ABSTRACT

Background: The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve functional outcomes after aSAH. Using an untargeted metabolomics approach, we sought to identify specific metabolites mediating these effects. Methods: Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N=12) or HPRO+NMES (N=12) and at 7 days as part of the INSPIRE protocol. Untargeted metabolomics were performed for each plasma sample. Paired fold changes were calculated for each metabolite among subjects in the HPRO+NMES group at baseline and 7 days after intervention. Changes in metabolites from baseline to 7 days were compared for the HPRO+NMES and SOC groups. Sparse partial least squared discriminant analysis (sPLS-DA) identified metabolites discriminating each group. Pearson's correlation coefficients were calculated between each metabolite and total protein per day, nitrogen balance, and muscle volume Multivariable models were developed to determine associations between each metabolite and muscle volume. Results: A total of 18 unique metabolites were identified including pre and post treatment and differentiating SOC vs HPRO+NMES. Of these, 9 had significant positive correlations with protein intake: N-acetylserine (ρ=0.61, P=1.56×10-3), N-acetylleucine (ρ=0.58, P=2.97×10-3), ß-hydroxyisovaleroylcarnitine (ρ=0.53, P=8.35×10-3), tiglyl carnitine (ρ=0.48, P=0.0168), N-acetylisoleucine (ρ=0.48, P=0.0183), N-acetylthreonine (ρ=0.47, P=0.0218), N-acetylkynurenine (ρ=0.45, P=0.0263), N-acetylvaline (ρ=0.44, P=0.0306), and urea (ρ=0.43, P=0.0381). In multivariable regression models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95%CI 1.01, 1.16)] and quadricep [OR 1.08 (95%CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95%CI 1.01, 1.09)] and quadricep [OR 1.04 (95%CI 1.00, 1.07)] muscle volume. N-acetylserine, N-acetylcitrulline, and b-hydroxyisovaleroylcarnitine were also associated with preserved temporalis or quadricep volume. Conclusions: Metabolites defining the HPRO+NMES intervention mainly consisted of amino acid derivatives. These metabolites had strong correlations with protein intake and were associated with preserved muscle volume.

4.
Res Sq ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986926

ABSTRACT

Background & Purpose: Ischemia affecting two thirds of the MCA territory predicts development of malignant cerebral edema. However, early infarcts are hard to diagnose on conventional head CT. We hypothesize that high-energy (190keV) virtual monochromatic images (VMI) from dual-energy CT (DECT) imaging enables earlier detection of secondary injury from malignant cerebral edema (MCE). Methods: Consecutive LHI patients with NIHSS ≥ 15 and DECT within 10 hours of reperfusion from May 2020 to March 2022 were included. We excluded patients with parenchymal hematoma-type 2 transformation. Retrospective analysis of clinical and novel variables included VMI Alberta Stroke Program Early CT Score (ASPECTS), total iodine content, and VMI infarct volume. Primary outcome was early neurological decline (END). Secondary outcomes included hemorrhagic transformation, decompressive craniectomy (DC), and medical treatment of MCE. Fisher's exact test and Wilcoxon test were used for univariate analysis. Logistic regression was used to develop prediction models for categorical outcomes. Results: Eighty-four LHI patients with a median age of 67.5 [IQR 57,78] years and NIHSS 22 [IQR 18,25] were included. Twenty-nine patients had END. VMI ASPECTS, total iodine content, and VMI infarct volume were associated with END. VMI ASPECTS, VMI infarct volume, and total iodine content were predictors of END after adjusting for age, sex, initial NIHSS, and tPA administration, with a AUROC of 0.691 [0.572,0.810], 0.877 [0.800, 0.954], and 0.845 [0.750, 0.940]. By including all three predictors, the model achieved AUROC of 0.903 [0.84,0.97] and was cross validated by leave one out method with AUROC of 0.827. Conclusion: DECT with high-energy VMI and iodine quantification is superior to conventional CT ASPECTS and is a novel predictor for early neurological decline due to malignant cerebral edema after large hemispheric infarction.

5.
Bioengineering (Basel) ; 9(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36550945

ABSTRACT

As an alternative to fossil fuels, biodiesel can be a source of clean and environmentally friendly energy source. However, its commercial application is limited by expensive feedstock and the slow nature of the pretreatment step-acid catalysis. The conventional approach to carry out this reaction uses stirred tank reactors. Recently, the lab-scale experiments using microbubble mediated mass transfer technology have demonstrated its potential use at commercial scale. However, all the studies conducted so far have been at a lab scale~100 mL of feedstock. To analyze the feasibility of microbubble technology, a larger pilot scale study is required. In this context, a kinetic study of microbubble technology at an intermediate scale is conducted (3 L of oil). Owing to the target for industrial application of the process, a commercial feedstock (Spirulina), microalgae oil (MO) and a commercial catalyst para-toluene sulfonic acid (PTSA) are used. Experiments to characterize the kinetics space (response surface, RSM) required for up-scaling are designed to develop a robust model. The model is compared with that developed by the gated recurrent unit (GRU) method. The maximum biodiesel conversion of 99.45 ± 1.3% is achieved by using these conditions: the molar ratio of MO to MeOH of 1:23.73 ratio, time of 60 min, and a catalyst loading of 3.3 wt% MO with an MO volume of 3 L. Furthermore, predicted models of RSM and GRU show proper fits to the experimental result. It was found that GRU produced a more accurate and robust model with correlation coefficient R2 = 0.9999 and root-mean-squared error (RSME) = 0.0515 in comparison with RSM model with R2 = 0.9844 and RMSE = 3.0832, respectively. Although RSM and GRU are fully empirical representations, they can be used for reactor up-scaling horizontally with microbubbles if the liquid layer height is held constant while the microbubble injection replicates along the floor of the reactor vessel-maintaining the tessellation pattern of the smaller vessel. This scaling approach maintains the local mixing profile, which is the major uncontrolled variable in conventional stirred tank reactor up-scaling.

6.
Bioengineering (Basel) ; 9(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36290501

ABSTRACT

Waste resources are an attractive option for economical the production of biodiesel; however, oil derived from waste resource contains free fatty acids (FFA). The concentration of FFAs must be reduced to below 1 wt.% before it can be converted to biodiesel using transesterification. FFAs are converted to fatty acid methyl esters (FAMEs) using acid catalysis, which is the rate-limiting reaction (~4000 times slower than transesterification), with a low conversion as well, in the over biodiesel production process. The study is focused on synthesizing and using a bifunctional catalyst (7% Sr/ZrO2) to carry out esterification and transesterification simultaneously to convert waste cooking oil (WCO) into biodiesel using microbubble-mediated mass transfer technology. The results reveal that a higher conversion of 85% is achieved in 20 min using 7% Sr/ZrO2 for biodiesel production. A comprehensive kinetic model is developed for the conversion of WCO in the presence of a 7% Sr/ZrO2 catalyst. The model indicates that the current reaction is pseudo-first-order, controlled by the vapor-liquid interface, which also indicates the complex role of microbubble interfaces due to the presence of the bifunctional catalyst. The catalyst could be recycled seven times, indicating its high stability during biodiesel production. The heterogeneous bifunctional catalyst is integrated with microbubble-mediated mass transfer technology for the first time. The results are unprecedented; furthermore, this study might be the first to use microbubble interfaces to "host" bifunctional metallic catalysts. The resulting one-step process of esterification and transesterification makes the process less energy-intensive and more cost-efficient, while also reducing process complexity.

7.
Chem Eng J ; 424: 130511, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34790031

ABSTRACT

Product inhibition is a barrier to many fermentation processes, including bioethanol production, and is responsible for dilute product streams which are energy intensive to purify. The main purpose of this study was to investigate whether hot microbubble stripping could be used to remove ethanol continuously from dilute ethanol-water mixtures expected in a bioreactor and maintain ethanol concentrations below the inhibitory levels for the thermophile Parageobacillus thermoglucosidasius (TM242), that can utilize a range of sugars derived from lignocellulosic biomass. A custom-made microbubble stripping unit that produces clouds of hot microbubbles (~120 °C) by fluidic oscillation was used to remove ethanol from ~2% (v/v) ethanol-water mixtures maintained at 60 °C. Ethanol was continuously added to the unit to simulate microbial metabolism. The initial liquid height and the ethanol addition rate were varied from 10 to 50 mm and 2.1-21.2 g h-1 respectively. In all the experiments, ethanol concentration was maintained well below the inhibition threshold of the target organism (~2% [v/v]). This microbubble stripping unit has the potential to operate in conjunction with a 0.5-1.0 L fermenter to allow an ethanol productivity of 14.9-7.8 g L- 1h-1 continuously.

8.
Front Neurol ; 12: 573294, 2021.
Article in English | MEDLINE | ID: mdl-34079506

ABSTRACT

Background: Prolonged hospital lengths of stay increase costs, delay rehabilitation, and expose acute ischemic stroke patients to hospital-acquired infections. We designed and implemented a nurse-driven transitions of care coordinator (TOCC) program to facilitate the transition of care from the acute care hospital setting to rehabilitation centers and home. Methods: This was a single-blinded, prospective, randomized pilot study of 40 participants to evaluate the feasibility of implementing a TOCC program led by a stroke nurse navigator in hospitalized acute ischemic stroke patients. The intervention consisted of a stroke nurse navigator completing eight specific tasks, including meeting with stroke patients and their families, facilitating communication between team members at multi-disciplinary rounds, assisting with referrals to rehabilitation facilities, providing stroke education, and arranging stroke clinic follow-up appointments, which were confirmed to be completed by independent study personnel. The primary outcome was to assess the feasibility of the program. The secondary outcomes included comparing hospital length of stay (LOS) and patient satisfaction between the TOCC and usual care groups. We also explored the association between patient-level variables and LOS. Results: The TOCC program was feasible with all pre-specified components completed in 84.2% (95% CI: 60.4-96.6%) and was not significantly different from the assumed completion rate of 75% (p = 0.438). There was no significant difference in median LOS between the two groups [TOCC 5.95 days (4.02, 9.57) vs. usual care 4.01 days (2.00, 10.45), false discovery rate (FDR)-adjusted p = 0.138]. There was a trend toward higher patient median satisfaction in the TOCC group [TOCC 35.00 (33.00, 35.00) vs. usual care 30 (26.00, 35.00), FDR-adjusted p = 0.1] as assessed by a questionnaire at 30 days after discharge. The TOCC study allowed us to identify patient variables (gender, insurance, stroke severity, and discharge disposition) that were significantly associated with longer hospital LOS. Conclusion: A TOCC program is feasible and can serve as a guide for future allocation of resources to facilitate transitions of care and avoid prolonged hospital stays.

9.
Biotechnol Biofuels ; 13: 104, 2020.
Article in English | MEDLINE | ID: mdl-32523617

ABSTRACT

BACKGROUND: Industrial biotechnology will play an increasing role in creating a more sustainable global economy. For conventional aerobic bioprocesses supplying O2 can account for 15% of total production costs. Microbubbles (MBs) are micron-sized bubbles that are widely used in industry and medical imaging. Using a fluidic oscillator to generate energy-efficient MBs has the potential to decrease the costs associated with aeration. However, little is understood about the effect of MBs on microbial physiology. To address this gap, a laboratory-scale MB-based Saccharomyces cerevisiae Ethanol Red propagation-fermentation bioethanol process was developed and analysed. RESULTS: Aeration with MBs increased O2 transfer to the propagation cultures. Titres and yields of bioethanol in subsequent anaerobic fermentations were comparable for MB-propagated and conventional, regular bubble (RB)-propagated yeast. However, transcript profiling showed significant changes in gene expression in the MB-propagated yeast compared to those propagated using RB. These changes included up-regulation of genes required for ergosterol biosynthesis. Ergosterol contributes to ethanol tolerance, and so the performance of MB-propagated yeast in fed-batch fermentations sparged with 1% O2 as either RBs or MBs were tested. The MB-sparged yeast retained higher levels of ergosteryl esters during the fermentation phase, but this did not result in enhanced viability or ethanol production compared to ungassed or RB-sparged fermentations. CONCLUSIONS: The performance of yeast propagated using energy-efficient MB technology in bioethanol fermentations is comparable to that of those propagated conventionally. This should underpin the future development of MB-based commercial yeast propagation.

10.
Front Microbiol ; 9: 678, 2018.
Article in English | MEDLINE | ID: mdl-29675015

ABSTRACT

There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD) reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (<2 min) destruction of two pure microcystins (MC-LR and MC-RR), together with removal of by-products even at low flow rate 1 L min-1 where bubble size was 0.56-0.6 mm and the ozone concentration within the liquid was 20 ppm. Toxicity levels were calculated through protein phosphatase inhibition assays and indicated loss of toxicity as well as confirming the by-products were also non-toxic. Finally, treatment of whole Microcystis aeruginosa cells showed that even at these very low ozone levels, cells can be killed and toxins (MC-LR and Desmethyl MC-LR) removed. Little change was observed in the first 20 min of treatment followed by rapid increase in extracellular toxins, indicating cell lysis, with most significant release at the higher 3 L min-1 flow rate compared to 1 L min-1. This lab-scale investigation demonstrates the potential of the novel plasma micro reactor with applications for in situ treatment of harmful algal blooms and cyanotoxins.

11.
AIChE J ; 64(11): 3803-3816, 2018 Nov.
Article in English | MEDLINE | ID: mdl-31031403

ABSTRACT

A novel lignocellulosic biomass pretreatment reactor has been designed and tested to investigate pretreatment efficacy of miscanthus grass. The reactor was designed to optimize the transfer of highly oxidative species produced by dielectric barrier discharge plasma to the liquid phase immediately after generation, by arranging close proximity of the plasma to the gas-liquid interface of microbubbles. The reactor produced a range of reactive oxygen species and reactive nitrogen species, and the rate of production depended on the power source duty cycle and the temperature of the plasma. Ozone and other oxidative species were dispersed efficiently using energy efficient microbubbles produced by fluidic oscillations. A 5% (w/w) miscanthus suspension pretreated for 3 h at 10% duty cycle yielded 0.5% acid soluble lignin release and 26% sugar release post hydrolysis with accelerated pretreatment toward the latter stages of the treatment demonstrating the potential of this approach as an alternative pretreatment method. © 2018 The Authors. AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers. © 2018 The Authors. AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers. AIChE J, 64: 3803-3816, 2018.

13.
Biology (Basel) ; 7(1)2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29286322

ABSTRACT

A laboratory based microflotation rig termed efficient FLOtation of Algae Technology (eFLOAT) was used to optimise parameters for harvesting microalgal biomass from eutrophic water systems. This was performed for the dual objectives of remediation (nutrient removal) and resource recovery. Preliminary experiments demonstrated that chitosan was more efficient than alum for flocculation of biomass and the presence of bacteria could play a positive role and reduce flocculant application rates under the natural conditions tested. Maximum biomass removal from a hyper-eutrophic water retention pond sample was achieved with 5 mg·L-1 chitosan (90% Chlorophyll a removal). Harvesting at maximum rates showed that after 10 days, the bacterial diversity is significantly increased with reduced cyanobacteria, indicating improved ecosystem functioning. The resource potential within the biomass was characterized by 9.02 µg phosphate, 0.36 mg protein, and 103.7 µg lipid per mg of biomass. Fatty acid methyl ester composition was comparable to pure cultures of microalgae, dominated by C16 and C18 chain lengths with saturated, monounsaturated, and polyunsaturated fatty acids. Finally, the laboratory data was translated into a full-size and modular eFLOAT system, with estimated costs as a novel eco-technology for efficient algal bloom harvesting.

14.
J Chem Technol Biotechnol ; 92(8): 1961-1969, 2017 08.
Article in English | MEDLINE | ID: mdl-28781404

ABSTRACT

BACKGROUND: Inactivation processes can be classified into non-thermal inactivation methods such as ethylene oxide and γ-radiation, and thermal methods such as autoclaving. The ability of carbon dioxide enriched microbubbles to inactivate Pseudomonas putida suspended in physiological saline, as a non-thermal sterilisation method, was investigated in this study with many operational advantages over both traditional thermal and non-thermal sterilisation methods. RESULTS: Introducing carbon dioxide enriched microbubbles can achieve ∼2-Log reduction in the bacterial population after 90 min of treatment, addition of ethanol to the inactivation solution further enhanced the inactivation process to achieve 3, 2.5 and 3.5-Log reduction for 2%, 5% and 10 %( v/v) ethanol, respectively. A range of morphological changes was observed on Pseudomonas cells after each treatment, and these changes extended from changing cell shape from rod shape to coccus shape to severe lesions and cell death. Pseudomonas putida KT 2440 was used as a model of gram-negative bacteria. CONCLUSION: Using CO2 enriched microbubbles technology has many advantages such as efficient energy consumption (no heat source), avoidance of toxic and corrosive reagents, and in situ treatment. In addition, many findings from this study could apply to other gram-negative bacteria. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

15.
Phys Chem Chem Phys ; 19(22): 14306-14318, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28537605

ABSTRACT

This study reports on understanding the formation of bubbles in ionic liquids (ILs), with a view to utilising ILs more efficiently in gas capture processes. In particular, the impact of the IL structure on the bubble sizes obtained has been determined in order to obtain design principles for the ionic liquids utilised. 11 ILs were used in this study with a range of physico-chemical properties in order to determine parametrically the impact on bubble size due to the liquid properties and chemical moieties present. The results suggest the bubble size observed is dictated by the strength of interaction between the cation and anion of the IL and, therefore, the mass transport within the system. This bubble size - ILs structure-physical property relationship has been illustrated using a series of QSPR correlations. A predictive model based only on the sigma profiles of the anions and cations has been developed which shows the best correlation without the need to incorporate the physico-chemical properties of the liquids. Depending on the IL, selected mean bubble sizes observed were between 56.1 and 766.9 µm demonstrating that microbubbles can be produced in the IL allowing the potential for enhanced mass transport and absorption kinetics in these systems.

16.
Appl Opt ; 55(26): 7392, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27661379

ABSTRACT

This note reports changes to the author list and additional funding sources for [Appl. Opt.55, 6102 (2016)].APOPAI0003-693510.1364/AO.55.006102.

17.
Sci Rep ; 6: 34140, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658850

ABSTRACT

One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties. A striking example is the deterministic enhancement of the superconducting properties of materials. Recent experiments have demonstrated that the metamaterial approach is capable of achieving this goal, such as tripling the critical temperature TC in Al-Al2O3 epsilon near zero (ENZ) core-shell metamaterial superconductors. Here, we demonstrate that an Al/Al2O3 hyperbolic metamaterial geometry is capable of a similar TC enhancement, while having superior transport and magnetic properties compared to the core-shell metamaterial superconductors.

18.
J Biomech ; 49(10): 2068-2075, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27237382

ABSTRACT

The mechanical loads acting across the knee joint following total knee replacements (TKR) during activities of daily living have recently been measured using instrumented TKRs. Using a series of postmortem retrieved TKR constructs we investigated whether these mechanical loads could result in damage to the implant bone interface or supporting bone in the tibia. Eighteen cemented en bloc tibial components (0 to 22 years in service) were loaded under axial compression in increments from 1 to 10 times body weight and digital image correlation was used to measure bone strain and interface micromotion during loading and unloading. Failure was considered to occur when micromotion exceeded 150µm or compressive bone strain exceeded 7300µÎµ. The results show that all retrieved specimens had sufficient bone strength to support most activities of daily living, but ~40% would be at risk under larger physiologic loads that might occur secondary to a higher impacts such as jogging or a stumble. The tray-bone micromotion (regression model R(2)=0.48, p=0.025) was greater for donors with lower age at implantation (p=0.0092). Proximal bone strain (model R(2)=0.46, p=0.03) was greater for donors with longer time in service (p=0.021). Distal bone strain (model R(2)=0.58, p=0.005) was greater for donors with more time in service (p=0.0054) and lower peri-implant BMD (p=0.049). High mechanical overload of a single or repetitive nature may be an initiating factor in aseptic loosening of total joint arthroplasties and should be avoided in order to prolong the life of the implant.


Subject(s)
Knee Prosthesis , Activities of Daily Living , Aged , Aged, 80 and over , Arthroplasty, Replacement, Knee , Humans , Knee Joint/physiology , Materials Testing , Middle Aged , Stress, Mechanical , Tibia/physiology
19.
Langmuir ; 32(5): 1269-78, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26754879

ABSTRACT

The production and utilization of microbubbles are rapidly becoming of major importance in a number of global applications, from biofuel production to medical imaging contrast agents. Many aspects of bubble formation have been studied, with diffuser characteristics (such as pore size, pore orientation) and gas flow rate all being shown to influence the bubble formation process. However, very little attention has been paid to the influence of surface wettability of the diffuser and the detailed role it plays at the triple interface of gas-liquid-diffuser. Here, we investigate how the wettability of the diffuser surface impacts upon the dynamics of the bubble formation process and examine the effect both at the orifice and upon the bubble cloud produced as a result of the engineered wetting variations. Experimental data shown here indicate the presence of a switching point at a contact angle of θ = 90°, where bubble size vastly changes. When a surface exhibits a contact angle below 90°, bubbles emitted from it are considerably smaller than those emitted from a surface with an angle in excess of 90°. This effect is observable over flow rates ranging from 2.5 to 60 mL min(-1) from a single pore, an array of controlled pores, and the industrially relevant and commercially available sintered metals and sintered ceramic diffusers. It is also observed for both thiol and silane modified surfaces, encompassing a range of contact angles from 10° to 110°. In addition, the importance of the diffuser plate's surface topography is discussed, with elevated roughness acting to reduce the effect of surface chemistry in some instances.

20.
Article in English | MEDLINE | ID: mdl-26301851

ABSTRACT

A novel design for a cascade dielectric barrier discharge (DBD) atomizer was applied for treating samples of water containing biological and organic contaminants. Several experimental investigations were conducted on artificial samples and real sample (digested sludge collected from a wastewater treatment plant, WWTP). The artificial water samples were prepared by using different concentrations of E. coli for biological samples, whereas acetic acid was used to prepare the organic samples. The biological samples were subjected to the plasma effect for different treatment periods, and the growth curves of E. coli were generated for 24 h after treatment. Moreover, the viable cells were counted after each treatment period and the change in E. coli morphology was monitored. The results showed that a significant reduction in the viable cell number, by 3 orders of magnitude, occurred for an artificial biological sample after only 5-min treatment. The treatment of organic samples for 10 min showed a significant reduction in the concentration of acetic acid by 50%. In consequence, treatment of real wastewater sample for 10 min resulted in more than 70% reduction in BOD5 and 30% reduction in COD.


Subject(s)
Plasma Gases/chemistry , Sewage/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation , Equipment Design , Escherichia coli , Humans , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...