Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 528 Pt 2: 371-8, 2000 Oct 15.
Article in English | MEDLINE | ID: mdl-11034626

ABSTRACT

The role of adrenaline in regulating muscle glycogenolysis and hormone-sensitive lipase (HSL) activity during exercise was examined in six adrenaline-deficient bilaterally adrenalectomised, adrenocortico-hormonal-substituted humans (Adr) and in six healthy control individuals (Con). Subjects cycled for 45 min at approximately 70% maximal pulmonary O2 uptake (VO2,max) followed by 15 min at approximately 86% VO2,max either without (-Adr and Con) or with (+Adr) adrenaline infusion that elevated plasma adrenaline levels (45 min, 4.49+/-0.69 nmol l(-1); 60 min, 12.41+/-1.80 nmol l(-1)). Muscle samples were obtained at 0, 45 and 60 min of exercise. In -Adr and Con, muscle glycogen was similar at rest (-Adr, 409+/-19 mmol (kg dry wt)(-1); Con, 453+/-24 mmol (kg dry wt)(-1)) and following exercise (-Adr, 237+/-52 mmol (kg dry wt)(-1); Con, 227+/-50 mmol (kg dry wt)(-1)). Muscle lactate, glucose-6-phosphate and glucose were similar in -Adr and Con, whereas glycogen phosphorylase (a/a + b x 100 %) and HSL (% phosphorylated) activities increased during exercise in Con only. Adrenaline infusion increased activities of phosphorylase and HSL as well as blood lactate concentrations compared with those in -Adr, but did not enhance glycogen breakdown (+Adr, glycogen following exercise: 274+/-55 mmol (kg dry wt)(-1)) in contracting muscle. The present findings demonstrate that during exercise muscle glycogenolysis can occur in the absence of adrenaline, and that adrenaline does not enhance muscle glycogenolysis in exercising adrenalectomised subjects. Although adrenaline increases the glycogen phosphorylase activity it is not essential for glycogen breakdown in contracting muscle. Finally, a novel finding is that the activity of HSL in human muscle is increased in exercising man and this is due, at least partly, to stimulation by adrenaline.


Subject(s)
Adrenalectomy , Epinephrine/deficiency , Epinephrine/metabolism , Exercise/physiology , Glycogen/metabolism , Muscle, Skeletal/metabolism , Adrenocorticotropic Hormone/therapeutic use , Adult , Case-Control Studies , Epinephrine/administration & dosage , Female , Glucose/metabolism , Glucose-6-Phosphate/metabolism , Humans , Infusions, Intravenous , Male , Middle Aged , Muscle, Skeletal/drug effects , Sterol Esterase/metabolism
2.
J Physiol ; 519 Pt 3: 911-21, 1999 Sep 15.
Article in English | MEDLINE | ID: mdl-10457100

ABSTRACT

1. The role of adrenaline in regulating hepatic glucose production and muscle glucose uptake during exercise was examined in six adrenaline-deficient, bilaterally adrenalectomised humans. Six sex- and age-matched healthy individuals served as controls (CON). 2. Adrenalectomised subjects cycled for 45 min at 68 +/- 1 % maximum pulmonary O2 uptake (VO2,max), followed by 15 min at 84 +/- 2 % VO2, max without (-ADR) or with (+ADR) adrenaline infusion, which elevated plasma adrenaline levels (45 min, 4.49 +/- 0.69 nmol l-1; 60 min, 12.41 +/- 1.80 nmol l-1; means +/- s.e.m.). Glucose kinetics were measured using [3-3H]glucose. 3. Euglycaemia was maintained during exercise in CON and -ADR, whilst in +ADR plasma glucose was elevated. The exercise-induced increase in hepatic glucose production was similar in +ADR and -ADR; however, adrenaline infusion augmented the rise in hepatic glucose production early in exercise. Glucose uptake increased during exercise in +ADR and -ADR, but was lower and metabolic clearance rate was reduced in +ADR. 4. During exercise noradrenaline and glucagon concentrations increased, and insulin and cortisol concentrations decreased, but plasma levels were similar between trials. Adrenaline infusion suppressed growth hormone and elevated plasma free fatty acids, glycerol and lactate. Alanine and beta-hydroxybutyrate levels were similar between trials. 5. The results demonstrate that glucose homeostasis was maintained during exercise in adrenalectomised subjects. Adrenaline does not appear to play a major role in matching hepatic glucose production to the increase in glucose clearance. In contrast, adrenaline infusion results in a mismatch by simultaneously enhancing hepatic glucose production and inhibiting glucose clearance.


Subject(s)
Blood Glucose/metabolism , Epinephrine/pharmacology , Exercise/physiology , Adrenalectomy , Fatty Acids, Nonesterified/blood , Female , Humans , Kinetics , Lactic Acid/blood , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...