Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Earth Space Chem ; 7(8): 1578-1591, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37609122

ABSTRACT

The physical and chemical properties of atmospheric aerosol particles depend on their sources and lifetime in the atmosphere. In coastal regions, sources may include influences from marine, continental, anthropogenic, and natural emissions. In this study, particles in ten diameter-size ranges were collected, and particle number size distributions were measured, at Skidaway Island, GA in May and June 2018. Based on air mass back trajectories and concentrations of major ions in the particles, the air mass source regions were identified as Marine Influenced, Mixed, and Continental Influenced. Organic molecules were extracted from the particles using solid-phase extraction and characterized using tensiometry and high-resolution mass spectrometry. The presence of surfactants was confirmed in the extracts through the observation of significant surface tension depressions. The organic formulas contained high hydrogen-to-carbon (H/C) and low oxygen-to-carbon (O/C) ratios, similar to surfactants and lipid-like molecules. In the Marine Influenced particles, the fraction of formulas identified as surfactant-like was negatively correlated with minimum surface tensions; as the surfactant fraction increased, the surface tension decreased. Analyses of fatty acid compounds demonstrated that organic compounds extracted from the Marine Influenced particles had the highest carbon numbers (18), compared to those of the Mixed (15) and Continental Influenced (9) particles. This suggests that the fatty acids in the Continental Influenced particles may have been more aged in the atmosphere and undergone fragmentation. This is one of the first studies to measure the chemical and physical properties of surfactants in size-resolved particles from different air mass source regions.

2.
ACS Cent Sci ; 1(3): 132-41, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-27162963

ABSTRACT

Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

3.
Environ Sci Technol ; 48(17): 10155-64, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25119270

ABSTRACT

The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and OH and NO3 radicals. Changes in the masses of 23 PAHs and 20 NPAHs, as well as the direct and indirect-acting mutagenicity of the PM (determined using the Salmonella mutagenicity assay with TA98 strain), were measured prior to and after exposure to NO3/N2O5, OH radicals, and O3. In general, O3 exposure resulted in the highest relative degradation of PM-bound PAHs with more than four rings (benzo[a]pyrene was degraded equally well by O3 and NO3/N2O5). However, NPAHs were most effectively formed during the Beijing PM exposure to NO3/N2O5. In ambient air, 2-nitrofluoranthene (2-NF) is formed from the gas-phase NO3 radical- and OH radical-initiated reactions of fluoranthene, and 2-nitropyrene (2-NP) is formed from the gas-phase OH radical-initiated reaction of pyrene. There was no formation of 2-NF or 2-NP in any of the heterogeneous exposures, suggesting that gas-phase formation of NPAHs did not play an important role during chamber exposures. Exposure of Beijing PM to NO3/N2O5 resulted in an increase in direct-acting mutagenic activity which was associated with the formation of mutagenic NPAHs. No NPAH formation was observed in any of the exposures of the Riverside PM. This was likely due to the accumulation of atmospheric degradation products from gas-phase reactions of volatile species onto the surface of PM collected in Riverside prior to exposure in the chamber, thus decreasing the availability of PAHs for reaction.


Subject(s)
Hydroxyl Radical/chemistry , Mutagens/chemistry , Nitrates/chemistry , Nitrogen Oxides/chemistry , Ozone/chemistry , Particulate Matter/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Atmosphere/chemistry , California , China , Fluorenes/chemistry , Mutagenicity Tests , Pyrenes/chemistry
4.
Environ Sci Technol ; 48(1): 412-9, 2014.
Article in English | MEDLINE | ID: mdl-24350894

ABSTRACT

The heterogeneous reactions of benzo[a]pyrene-d12 (BaP-d12), benzo[k]fluoranthene-d12 (BkF-d12), benzo[ghi]perylene-d12 (BghiP-d12), dibenzo[a,i]pyrene-d14 (DaiP-d14), and dibenzo[a,l]pyrene (DalP) with NO2, NO3/N2O5, and OH radicals were investigated at room temperature and atmospheric pressure in an indoor Teflon chamber and novel mono-NO2-DaiP and mono-NO2-DalP products were identified. Quartz fiber filters (QFF) were used as a reaction surface and the filter extracts were analyzed by GC/MS for nitrated-PAHs (NPAHs) and tested in the Salmonella mutagenicity assay, using Salmonella typhimurium strain TA98 (with and without metabolic activation). In parallel to the laboratory experiments, a theoretical study was conducted to rationalize the formation of NPAH isomers based on the thermodynamic stability of OH-PAH intermediates, formed from OH-radical-initiated reactions. NO2 and NO3/N2O5 were effective oxidizing agents in transforming PAHs to NPAHs, with BaP-d12 being the most readily nitrated. Reaction of BaP-d12, BkF-d12, and BghiP-d12 with NO2 and NO3/N2O5 resulted in the formation of more than one mononitro isomer product, while the reaction of DaiP-d14 and DalP resulted in the formation of only one mononitro isomer product. The direct-acting mutagenicity increased the most after NO3/N2O5 exposure, particularly for BkF-d12 in which di-NO2-BkF-d10 isomers were measured. The deuterium isotope effect study suggested that substitution of deuterium for hydrogen lowered both the direct and indirect acting mutagenicity of NPAHs and may result in an underestimation of the mutagencity of the novel NPAHs identified in this study.


Subject(s)
Mutagens/chemistry , Nitrogen Oxides/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Mutagens/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
5.
Environ Sci Technol ; 47(15): 8434-42, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23865889

ABSTRACT

Reactions of ambient particles collected from four sites within the Los Angeles, CA air basin and Beijing, China with a mixture of N2O5, NO2, and NO3 radicals were studied in an environmental chamber at ambient pressure and temperature. Exposures in the chamber system resulted in the degradation of particle-bound PAHs and formation of molecular weight (mw) 247 nitropyrenes (NPYs) and nitrofluoranthenes (NFLs), mw 273 nitrotriphenylenes (NTPs), nitrobenz[a]anthracenes (NBaAs), nitrochrysene (NCHR), and mw 297 nitrobenzo[a]pyrene (NBaP). The distinct isomer distributions resulting from exposure of filter-adsorbed deuterated fluoranthene to N2O5/NO3/NO2 and that collected from the chamber gas-phase suggest that formation of NFLs in ambient particles did not occur by NO3 radical-initiated reaction but from reaction of N2O5, presumably subsequent to its surface adsorption. Accordingly, isomers known to result from gas-phase radical-initiated reactions of parent PAHs, such as 2-NFL and 2- and 4-NPY, were not enhanced from the exposure of ambient particulate matter to N2O5/NO3/NO2. The reactivity of ambient particles toward nitration by N2O5/NO3/NO2, defined by relative 1-NPY formation, varied significantly, with the relative amounts of freshly emitted particles versus aged particles (particles that had undergone atmospheric chemical processing) affecting the reactivity of particle-bound PAHs toward heterogeneous nitration. Analyses of unexposed ambient samples suggested that, in nighttime samples where NO3 radical-initiated chemistry had occurred, heterogeneous formation of 1-NPY on ambient particles may have contributed to the ambient 1-NPY concentrations at downwind receptor sites. These results, together with observations that 2-NFL is consistently the dominant particle-bound nitro-PAH measured in ambient atmospheres, suggest that for PAHs that exist in both the gas- and particle-phase, the heterogeneous formation of particle-bound nitro-PAHs is a minor formation route compared to gas-phase formation.


Subject(s)
Nitrogen Oxides/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Adsorption , Particulate Matter , Surface Properties
6.
Environ Sci Technol ; 46(14): 7535-42, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22757668

ABSTRACT

Dimethylnitronaphthalene (DMNN) formation yields from the reactions of 1,7- and 2,7- dimethylnaphthalene (DMN) with OH radicals were measured over the NO(2) concentration range 0.04-1.4 ppmv. The measured DMNN formation yields under conditions that the OH-DMN adducts reacted solely with NO(2) were 0.252 ± 0.094% for Σ1,7-DMNNs and 0.010 ± 0.005% for Σ2,7-DMNNs. 1,7-DM-5-NN was the major isomer formed, with a limiting high-NO(2) concentration yield of 0.212 ± 0.080% and with equal reactions of the adduct with NO(2) and O(2) occurring in air at 60 ± 39 ppbv of NO(2). The reactions of the OH-DMN adducts with NO(2) must therefore result in products other than DMNNs. Although the yields of the DMNNs are low, ≤0.3%, the DMNN (and ethylnitronaphthalene) profiles from chamber experiments match well with those observed in polluted urban areas under conditions where OH radical-initiated chemistry is dominant. Daytime OH radical and nighttime NO(3) radical reactions appear to account for the alkylnitronaphthalenes formed and their observed profiles under most urban atmospheric conditions, with profiles reflecting daytime OH chemistry modified by contributions from isomers formed by any NO(3) radical chemistry that had occurred. Since the formation yields and NO(2) dependencies for the formation of a number of alkylnitronaphthalenes have now been measured, the effect of NO(x) emissions control strategies on their atmospheric formation can be quantitatively assessed, and the decrease in formation of these genotoxic species may provide a previously unrecognized health benefit of NO(x) control.


Subject(s)
Gases/chemistry , Hydroxyl Radical/chemistry , Naphthalenes/chemistry , Nitrates/chemistry , Gas Chromatography-Mass Spectrometry , Isomerism , Kinetics , Photolysis
7.
Langmuir ; 23(8): 4346-50, 2007 Apr 10.
Article in English | MEDLINE | ID: mdl-17355156

ABSTRACT

The effect of a remote oxygen plasma on nanocomposite hybrid polymer thin films of poly[(propylmethacryl-heptaisobutyl-polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)] (POSS-MA) has been examined by advancing contact angle, X-ray photoelectron spectroscopy (XPS), and variable-angle spectroscopic ellipsometry (VASE). Exposure to a 25 W remote oxygen-containing plasma was found to convert the surface of POSS-MA films from hydrophobic to hydrophilic within 20 s. The exposure time needed for this conversion to occur decreased as the O2/N2 ratio in the plasma environment increased, indicating a positive correlation between the hydrophilicity and the presence of oxygen in the plasma. Local bonding information inferred from high-resolution XPS data showed that the isobutyl bonding to the POSS moiety is replaced with oxygen as a result of plasma exposure. Finally, VASE data demonstrates that increasing the weight percent of POSS in the copolymer significantly impedes the oxygen plasma degradation of POSS-MA films. On the basis of these results, a model is presented in which the oxygen plasma removes isobutyl groups from the POSS cages and leaves a SiO2-like surface that is correspondingly more hydrophilic than the surface of the untreated samples and is more resistant to oxidation by the plasma. The ability to modify surfaces in this manner may impact the utility of this material for biomedical applications such as microfluidic devices in which the ability to control surface chemistry is critical.

SELECTION OF CITATIONS
SEARCH DETAIL
...