Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 56(Pt 3): 581-588, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284256

ABSTRACT

Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the in situ setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.

2.
Nat Commun ; 12(1): 2839, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33990573

ABSTRACT

A combination of complementary high-energy X-ray diffraction, containerless solidification during electromagnetic levitation and transmission electron microscopy is used to map in situ the phase evolution in a prototype Cu-Zr-Al glass during flash-annealing imposed at a rate ranging from 102 to 103 K s-1 and during cooling from the liquid state. Such a combination of experimental techniques provides hitherto inaccessible insight into the phase-transformation mechanism and its kinetics with high temporal resolution over the entire temperature range of the existence of the supercooled liquid. On flash-annealing, most of the formed phases represent transient (metastable) states - they crystallographically conform to their equilibrium phases but the compositions, revealed by atom probe tomography, are different. It is only the B2 CuZr phase which is represented by its equilibrium composition, and its growth is facilitated by a kinetic mechanism of Al partitioning; Al-rich precipitates of less than 10 nm in a diameter are revealed. In this work, the kinetic and chemical conditions of the high propensity of the glass for the B2 phase formation are formulated, and the multi-technique approach can be applied to map phase transformations in other metallic-glass-forming systems.

3.
Rev Sci Instrum ; 91(7): 073901, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752795

ABSTRACT

Details of fast-resistive-heating setups, controlled heating ranging from ∼101 K s-1 to ∼103 K s-1, to study in situ phase transformations (on heating and on cooling) in metallic glasses by high-energy synchrotron x-ray diffraction are discussed. Both setups were designed and custom built at the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) and have been implemented at the P02.1 Powder Diffraction and Total Scattering Beamline and the P21.1 Swedish Materials Science Beamline at PETRA III storage ring, DESY, Hamburg. The devices are interchangeable at both beamlines. Joule heating is triggered automatically and is timed with the incident beam and detector. The crystallization process can be controlled via a feedback circuit by monitoring the change in the time-dependent resistivity and temperature of glasses. Different ambient atmospheres, such as vacuum and inert gases (He and Ar), can be used to control oxidation and cooling. The main focus of these devices is on understanding the crystallization mechanism and kinetics in metallic glasses, which are brittle and for which fast heating gives defined glass-crystal composites with enhanced plasticity. As an example, phase-transformation sequence(s) in a prototyped Cu-Zr-based metallic glass is described on heating, and a crystalline phase beneficial to the plasticity is identified.

4.
Nanoscale ; 12(24): 13103-13112, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32543637

ABSTRACT

Functional thin films are commonly integrated in electronic devices as part of a multi-layer architecture. Metal/oxide/metal structures e.g. in resistive switching memory and piezoelectric microelectrochemical devices are relevant applications. The films are mostly fabricated from the vapour phase or by solution deposition. Processing conditions with a limited thermal budget typically yield nanocrystalline or amorphous layers. For these aperiodic materials, the structure is described in terms of the local atomic order on the length scale of a few chemical bonds up to several nanometres. Previous structural studies of the short-range order in thin films have addressed the simple case of single coatings on amorphous substrates. By contrast, this work demonstrates how to probe the local structure of two stacked functional layers by means of grazing incidence total X-ray scattering and pair distribution function (PDF) analysis. The key to separating the contributions of the individual thin films is the variation of the incidence angle below the critical angle of total external reflection, In this way, structural information was obtained for functional oxides on textured electrodes, i.e. PbZr0.53O0.47O3 on Pt[111] and HfO2 on TiN, as well as HfO2-TiOx bilayers. For these systems, the transformations from disordered phases into periodic structures via thermal teatment are described. These examples highlight the opportunity to develop a detailed understanding of structural evolution during the fabrication of real thin film devices using the PDF technique.

5.
RSC Adv ; 9(55): 31900-31910, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530788

ABSTRACT

Copper thiourea complexes are an important material class for application as a precursor of copper sulfide nanocrystals with potential use in solar cells, optoelectronics, medicine, etc. They represent a type of single source precursor, comprising both copper and sulfur in one chemical compound, whose tunable stoichiometry and morphology enable control of the quality and properties of the synthesized copper sulfide nanocrystals. Here, we present a template free electrochemical route to prepare nanowires of copper thiourea (tu) chloride hemihydrate ([Cu(tu)]Cl·½H2O) by pulse deposition. We proposed the model of the growth of nanowires. We also demonstrate complete transformation from the precursor to copper sulfide nanowire by heating it to 180 °C that involves 20% volume loss due to the decomposition of organic constituents; the obtained nanowires have around 38% covellite (CuS) and 62% digenite (Cu1.8S) phases. Electrochemistry offers the advantage of spatially selected deposition e.g. in the active regions of a device.

6.
Sci Rep ; 3: 2383, 2013.
Article in English | MEDLINE | ID: mdl-23924946

ABSTRACT

Despite intensive research a physical explanation of high Tc superconductors remains elusive. One reason for this is that these materials have generally a very complex structure making useless theoretical models for a homogeneous system. Little is known on the control of the critical temperature by the space disposition of defects because of lack of suitable experimental probes. X-ray diffraction and neutron scattering experiments used to investigate y oxygen dopants in YBa2Cu3O6+y lack of spatial resolution. Here we report the spatial imaging of dopants distribution inhomogeneity in YBa2Cu3O6.67 using scanning nano X-ray diffraction. By changing the X-ray beam size from 1 micron to 300 nm of diameter, the lattice inhomogeneity increases. The ordered oxygen puddles size distribution vary between 6-8 nm using 1 × 1 µm(2) beam, while it is between 5-12 nm with a fat tail using the 300 × 300 nm(2) beam. The increased inhomogeneity at the nanoscale points toward a network of superconducting puddles made of ordered oxygen interstitials.


Subject(s)
Copper/chemistry , Oxygen/chemistry , Electric Conductivity , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...