Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acad Radiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997881

ABSTRACT

RATIONALE AND OBJECTIVES: Given the high volume of chest radiographs, radiologists frequently encounter heavy workloads. In outpatient imaging, a substantial portion of chest radiographs show no actionable findings. Automatically identifying these cases could improve efficiency by facilitating shorter reading workflows. PURPOSE: A large-scale study to assess the performance of AI on identifying chest radiographs with no actionable disease (NAD) in an outpatient imaging population using comprehensive, objective, and reproducible criteria for NAD. MATERIALS AND METHODS: The independent validation study includes 15000 patients with chest radiographs in posterior-anterior (PA) and lateral projections from an outpatient imaging center in the United States. Ground truth was established by reviewing CXR reports and classifying cases as NAD or actionable disease (AD). The NAD definition includes completely normal chest radiographs and radiographs with well-defined non-actionable findings. The AI NAD Analyzer1 (trained with 100 million multimodal images and fine-tuned on 1.3 million radiographs) utilizes a tandem system with image-level rule in and compartment-level rule out to provide case level output as NAD or potential actionable disease (PAD). RESULTS: A total of 14057 cases met our eligibility criteria (age 56 ± 16.1 years, 55% women and 45% men). The prevalence of NAD cases in the study population was 70.7%. The AI NAD Analyzer correctly classified NAD cases with a sensitivity of 29.1% and a yield of 20.6%. The specificity was 98.9% which corresponds to a miss rate of 0.3% of cases. Significant findings were missed in 0.06% of cases, while no cases with critical findings were missed by AI. CONCLUSION: In an outpatient population, AI can identify 20% of chest radiographs as NAD with a very low rate of missed findings. These cases could potentially be read using a streamlined protocol, thus improving efficiency and consequently reducing daily workload for radiologists.

2.
BMC Infect Dis ; 22(1): 637, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35864468

ABSTRACT

BACKGROUND: Airspace disease as seen on chest X-rays is an important point in triage for patients initially presenting to the emergency department with suspected COVID-19 infection. The purpose of this study is to evaluate a previously trained interpretable deep learning algorithm for the diagnosis and prognosis of COVID-19 pneumonia from chest X-rays obtained in the ED. METHODS: This retrospective study included 2456 (50% RT-PCR positive for COVID-19) adult patients who received both a chest X-ray and SARS-CoV-2 RT-PCR test from January 2020 to March of 2021 in the emergency department at a single U.S. INSTITUTION: A total of 2000 patients were included as an additional training cohort and 456 patients in the randomized internal holdout testing cohort for a previously trained Siemens AI-Radiology Companion deep learning convolutional neural network algorithm. Three cardiothoracic fellowship-trained radiologists systematically evaluated each chest X-ray and generated an airspace disease area-based severity score which was compared against the same score produced by artificial intelligence. The interobserver agreement, diagnostic accuracy, and predictive capability for inpatient outcomes were assessed. Principal statistical tests used in this study include both univariate and multivariate logistic regression. RESULTS: Overall ICC was 0.820 (95% CI 0.790-0.840). The diagnostic AUC for SARS-CoV-2 RT-PCR positivity was 0.890 (95% CI 0.861-0.920) for the neural network and 0.936 (95% CI 0.918-0.960) for radiologists. Airspace opacities score by AI alone predicted ICU admission (AUC = 0.870) and mortality (0.829) in all patients. Addition of age and BMI into a multivariate log model improved mortality prediction (AUC = 0.906). CONCLUSION: The deep learning algorithm provides an accurate and interpretable assessment of the disease burden in COVID-19 pneumonia on chest radiographs. The reported severity scores correlate with expert assessment and accurately predicts important clinical outcomes. The algorithm contributes additional prognostic information not currently incorporated into patient management.


Subject(s)
COVID-19 , Deep Learning , Adult , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Prognosis , Radiography, Thoracic , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , X-Rays
3.
Acad Radiol ; 29(8): 1189-1195, 2022 08.
Article in English | MEDLINE | ID: mdl-34657812

ABSTRACT

RATIONALE AND OBJECTIVES: To compare an artificial intelligence (AI)-based prototype and subjective grading for predicting disease severity in patients with emphysema. METHODS: Our IRB approved HIPAA-compliant study included 113 adults (71±8 years; 47 females, 66 males) who had both non-contrast chest CT and pulmonary function tests performed within a span of 2 months. The disease severity was classified based on the forced expiratory volume in 1 second (FEV1 as % of predicted) into mild, moderate, and severe. 2 thoracic radiologists (RA), blinded to the clinical and AI results, graded severity of emphysema on a 5-point scale suggested by the Fleischner Society for each lobe. The whole lung scores were derived from the summation of lobar scores. Thin-section CT images were processed with the AI-Rad Companion Chest prototype (Siemens Healthineers) to quantify low attenuation areas (LAA < - 950 HU) in whole lung and each lobe separately. Bronchial abnormality was assessed by both radiologists and a fully automated software (Philips Healthcare). RESULTS: Both AI (AUC of 0.77; 95% CI: 0.68 - 0.85) and RA (AUC: 0.76, 95% CI: 0.65 - 0.84) emphysema quantification could differentiate mild, moderate, and severe disease based on FEV1. There was a strong positive correlation between AI and RA (r = 0.72 - 0.80; p <0.001). The combination of emphysema and bronchial abnormality quantification from radiologists' and AI assessment could differentiate between different severities with AUC of 0.80 - 0.82 and 0.87, respectively. CONCLUSION: The assessed AI-prototypes can predict the disease severity in patients with emphysema with the same predictive value as the radiologists.


Subject(s)
Emphysema , Pulmonary Emphysema , Adult , Artificial Intelligence , Female , Humans , Lung/diagnostic imaging , Male , Pulmonary Emphysema/diagnostic imaging , Tomography, X-Ray Computed/methods
4.
Clin Imaging ; 80: 58-66, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34246044

ABSTRACT

PURPOSE: Comparison of deep learning algorithm, radiomics and subjective assessment of chest CT for predicting outcome (death or recovery) and intensive care unit (ICU) admission in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: The multicenter, ethical committee-approved, retrospective study included non-contrast-enhanced chest CT of 221 SARS-CoV-2 positive patients from Italy (n = 196 patients; mean age 64 ± 16 years) and Denmark (n = 25; mean age 69 ± 13 years). A thoracic radiologist graded presence, type and extent of pulmonary opacities and severity of motion artifacts in each lung lobe on all chest CTs. Thin-section CT images were processed with CT Pneumonia Analysis Prototype (Siemens Healthineers) which yielded segmentation masks from a deep learning (DL) algorithm to derive features of lung abnormalities such as opacity scores, mean HU, as well as volume and percentage of all-attenuation and high-attenuation (opacities >-200 HU) opacities. Separately, whole lung radiomics were obtained for all CT exams. Analysis of variance and multiple logistic regression were performed for data analysis. RESULTS: Moderate to severe respiratory motion artifacts affected nearly one-quarter of chest CTs in patients. Subjective severity assessment, DL-based features and radiomics predicted patient outcome (AUC 0.76 vs AUC 0.88 vs AUC 0.83) and need for ICU admission (AUC 0.77 vs AUC 0.0.80 vs 0.82). Excluding chest CT with motion artifacts, the performance of DL-based and radiomics features improve for predicting ICU admission. CONCLUSION: DL-based and radiomics features of pulmonary opacities from chest CT were superior to subjective assessment for differentiating patients with favorable and adverse outcomes.


Subject(s)
COVID-19 , Deep Learning , Aged , Aged, 80 and over , Humans , Lung/diagnostic imaging , Middle Aged , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
5.
J Digit Imaging ; 34(2): 320-329, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33634416

ABSTRACT

To perform a multicenter assessment of the CT Pneumonia Analysis prototype for predicting disease severity and patient outcome in COVID-19 pneumonia both without and with integration of clinical information. Our IRB-approved observational study included consecutive 241 adult patients (> 18 years; 105 females; 136 males) with RT-PCR-positive COVID-19 pneumonia who underwent non-contrast chest CT at one of the two tertiary care hospitals (site A: Massachusetts General Hospital, USA; site B: Firoozgar Hospital Iran). We recorded patient age, gender, comorbid conditions, laboratory values, intensive care unit (ICU) admission, mechanical ventilation, and final outcome (recovery or death). Two thoracic radiologists reviewed all chest CTs to record type, extent of pulmonary opacities based on the percentage of lobe involved, and severity of respiratory motion artifacts. Thin-section CT images were processed with the prototype (Siemens Healthineers) to obtain quantitative features including lung volumes, volume and percentage of all-type and high-attenuation opacities (≥ -200 HU), and mean HU and standard deviation of opacities within a given lung region. These values are estimated for the total combined lung volume, and separately for each lung and each lung lobe. Multivariable analyses of variance (MANOVA) and multiple logistic regression were performed for data analyses. About 26% of chest CTs (62/241) had moderate to severe motion artifacts. There were no significant differences in the AUCs of quantitative features for predicting disease severity with and without motion artifacts (AUC 0.94-0.97) as well as for predicting patient outcome (AUC 0.7-0.77) (p > 0.5). Combination of the volume of all-attenuation opacities and the percentage of high-attenuation opacities (AUC 0.76-0.82, 95% confidence interval (CI) 0.73-0.82) had higher AUC for predicting ICU admission than the subjective severity scores (AUC 0.69-0.77, 95% CI 0.69-0.81). Despite a high frequency of motion artifacts, quantitative features of pulmonary opacities from chest CT can help differentiate patients with favorable and adverse outcomes.


Subject(s)
COVID-19 , Adult , Female , Humans , Lung/diagnostic imaging , Male , Prognosis , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed
6.
Cardiovasc Diagn Ther ; 3(2): 80-92, 2013 Jun.
Article in English | MEDLINE | ID: mdl-24282750

ABSTRACT

Degenerative aortic stenosis is highly prevalent in the aging populations of industrialized countries and is associated with poor prognosis. Surgical valve replacement has been the only established treatment with documented improvement of long-term outcome. However, many of the older patients with aortic stenosis (AS) are high-risk or ineligible for surgery. For these patients, transcatheter aortic valve replacement (TAVR) has emerged as a treatment alternative. The TAVR procedure is characterized by a lack of visualization of the operative field. Therefore, pre- and intra-procedural imaging is critical for patient selection, pre-procedural planning, and intra-operative decision-making. Incremental to conventional angiography and 2-D echocardiography, multidetector computed tomography (CT) has assumed an important role before TAVR. The analysis of 3-D CT data requires extensive post-processing during direct interaction with the dataset, using advance analysis software. Organization and storage of the data according to complex clinical workflows and sharing of image information have become a critical part of these novel treatment approaches. Optimally, the data are integrated into a comprehensive image data file accessible to multiple groups of practitioners across the hospital. This creates new challenges for data management requiring a complex IT infrastructure, spanning across multiple locations, but is increasingly achieved with client-server solutions and private cloud technology. This article describes the challenges and opportunities created by the increased amount of patient-specific imaging data in the context of TAVR.

SELECTION OF CITATIONS
SEARCH DETAIL
...