Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 448(7152): 457-60, 2007 Jul 26.
Article in English | MEDLINE | ID: mdl-17653188

ABSTRACT

Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

2.
J Nanosci Nanotechnol ; 6(7): 2175-81, 2006 Jul.
Article in English | MEDLINE | ID: mdl-17025145

ABSTRACT

Textured alumina films have been used to fabricate nanoscale pores in Si3N4 membranes. A few nanometer-thick alumina layer was used as a masking material for nanopore fabrication, and the pattern was transferred into a 100-nm thick, 200 microm x 200 microm Si3N4 membrane by reactive ion etching (RIE). The nanopores were found to be concentrated in a approximately 150-microm diameter region at the center of the membrane.


Subject(s)
Crystallization/methods , Membranes, Artificial , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Silicon Compounds/chemistry , Ultrafiltration/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/instrumentation , Particle Size , Porosity , Surface Properties , Ultrafiltration/instrumentation
3.
Nature ; 442(7100): 282-6, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16855586

ABSTRACT

Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...