Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 10(21): 12233-12245, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33209284

ABSTRACT

Wind and bark beetle disturbances have increased in recent decades, affecting Europe's coniferous forests with particular severity. Management fostering forest diversity and resilience is deemed to effectively mitigate disturbance impacts, yet its efficiency and interaction with other disturbance management measures remain unclear.We focused on Central Europe, which has become one of the hotspots of recent disturbance changes. We used the iLand ecosystem model to understand the interplay between species composition of the forest, forest disturbance dynamics affected by climate change, and disturbance management. The tested measures included (a) active transformation of tree species composition toward site-matching species; (b) intensive removal of windfelled trees, which can support the buildup of bark beetle populations; and (c) reduction of mature and vulnerable trees on the landscape via modified harvesting regimes.We found that management systems aiming to sustain the dominance of Norway spruce in the forest are failing under climate change, and none of the measures applied could mitigate the disturbance impacts. Conversely, management systems fostering forest diversity substantially reduced the level of disturbance. Significant disturbance reduction has been achieved even without salvaging and rotation length reduction, which is beneficial for ecosystem recovery, carbon, and biodiversity. Synthesis and applications: We conclude that climate change amplifies the contrast in vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance. Whereas forests dominated by Norway spruce are not likely to be sustained in Central Europe under climate change, different management strategies can be applied in species-diverse forests to reach the desired control over the disturbance dynamic. Our findings justify some unrealistic expectations about the options to control disturbance dynamics under climate change and highlight the importance of management that fosters forest diversity.

2.
For Ecol Manage ; 475: 118408, 2020 Nov.
Article in English | MEDLINE | ID: mdl-35686290

ABSTRACT

Forest disturbance regimes are intensifying in many parts of the globe. In order to mitigate disturbance impacts a number of management responses have been proposed, yet their effectiveness in addressing changing disturbance regimes remains largely unknown. The strong positive relationship between forest age and the vulnerability to disturbances such as windthrows and bark beetle infestations suggests that a reduced rotation length can be a potent means for mitigating the impacts of natural disturbances. However, disturbance mitigation measures such as shortened rotation lengths (SRL) can also have undesired consequences on ecosystem services and biodiversity, which need to be considered in their application. Here, we used the process-based landscape and disturbance model iLand to investigate the effects of SRL on the vulnerability of a 16,000 ha forest landscape in Central Europe to wind and bark beetle disturbances. We experimentally reduced the current rotation length (between 100 and 115 years) by up to -40% in 10% increments, and studied effects on disturbance dynamics under current and future climate conditions over a 200-year simulation period. Simultaneously, we quantified the collateral effects of SRL on forest carbon stocks and indicators of biodiversity. Shortening the rotation length by 40% decreased disturbances by 14%. This effect was strongly diminished under future climate change, reducing the mitigating effect of shortened rotation to < 6%. Collateral effects were severe in the initial decades after implementation: Reducing the rotation length by 40% caused a spike in harvested timber volume (+ 92%), decreased total forest carbon storage by 6% and reduced the number of large trees on the landscape by 20%. The long-term effects of SRL were less pronounced. At the same time, SRL caused an increase in tree species diversity. Shortening rotation length can reduce the impact of wind and bark beetle disturbances, but the overall efficiency of the measure is limited and decreases under climate change. Given the potential for undesired collateral effects we conclude that a reduction of the rotation length is no panacea for managing increasing disturbances, and should be applied in combination with other management measures reducing risks and fostering resilience.

3.
J Environ Manage ; 254: 109792, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31731030

ABSTRACT

Windfelled Norway spruce (Picea abies) trees play a crucial role in triggering large-scale outbreaks of the European spruce bark beetle Ips typographus. Outbreak management therefore strives to remove windfelled trees to reduce the risk of outbreaks, a measure referred to as sanitation logging (SL). Although this practice has been traditionally applied, its efficiency in preventing outbreaks remains poorly understood. We used the landscape simulation model iLand to investigate the effects of different spatial configurations and intensities of SL of windfelled trees on the subsequent disturbance by bark beetles. We studied differences between SL applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives). We focused on a 16 050 ha forest landscape in Central Europe. The removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing SL on the vicinity of roads created a "fire break effect" on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Climate change increased bark beetle disturbances and reduced the effect of SL. Our results suggest that past outbreak management methods will not be sufficient to counteract climate-mediated increases in bark beetle disturbance.


Subject(s)
Coleoptera , Trees , Animals , Europe , Forests , Norway , Plant Bark
SELECTION OF CITATIONS
SEARCH DETAIL
...