Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 17: 1440-1446, 2021.
Article in English | MEDLINE | ID: mdl-34194580

ABSTRACT

Pavettamine, a plant toxin first isolated from Pavetta harborii in 1995, was previously identified as a polyamine with C 2 symmetry and a 1,3-syn-diol moiety on a C10 carbon backbone - one of very few substituted polyamines to be isolated from nature. Its absolute configuration was later established by our first reported total synthesis in 2010. Herein we report the first total synthesis of the enantiomer of pavettamine, ent-pavettamine. The symmetrical structure of the molecule allows for the synthesis of a common C5 fragment that can be divergently transformed into two synthons for later convergent coupling to furnish the target carbon framework. Based on the success of the protocol we employed for the synthesis of the naturally occurring pavettamine, (S)-malic acid was again the starting material of choice for the synthesis of the two individual C5 fragments, with strategic differences in terminal-group manipulation allowing for the synthesis of ent-pavettamine rather than pavettamine. Chain extension and stereoselective ketone reduction were achieved using the (R)-methyl p-tolyl sulfoxide chiral auxiliary to give the desired 1,3-syn-diol C5 unit. A protecting-group strategy was also developed for the orthogonal protection of the alcohol and amine functional groups as they were unveiled. The functionalized C5 fragments were coupled via reductive amination revealing the C10 carbon backbone. Deprotection of the alcohol and amine functional groups successfully provided ent-pavettamine as a TFA salt.

2.
RSC Adv ; 10(56): 34231-34246, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519021

ABSTRACT

To study the effect of time on the colloidal synthesis of Cu3N nanoparticles, copper(ii) nitrate was thermally decomposed at 260 °C for up to 60 min in octadecylamine as a stabilizing ligand. Thermolysis of the nitrate followed four steps which included; nucleation, growth, ripening and decomposition. At 5 min, partially developed nanocubes were found in a dense population of Cu3N nuclei. Well-defined Cu3N nanocubes were obtained at 15 min with no presence of the nuclei. TEM images showed disintegration of the cubes at 20 min and as time progressed, all the Cu3N decomposed to Cu by 60 min. The formation of the Cu3N nanocubes was confirmed by XRD and XPS. FTIR suggested the formation of a nitrile (RCN) as a result of the thermal decomposition in octadecylamine (ODA) and this was confirmed using NMR and hence, a reaction mechanism was then proposed. The optical properties of the as-synthesized Cu3N were studied using UV-vis and photoluminescence spectroscopies. The absorption spectra for particles synthesized from 5 min to 15 min showed a singular exciton peak while from 20 min to 60 min two peaks were observed. The two peaks may both be associated with the two direct transitions observed in Cu3N or the more red-shifted peak could be a result of localized surface plasmon resonance due to the Cu nanoparticles. Nevertheless, similar to other studies, it is clear that the optical properties of Cu3N are complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...