Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Eng Sci Med ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634981

ABSTRACT

Modern radiotherapy techniques have advanced and become more sophisticated. End-to-end 3D verification of the complex radiotherapy dose distribution in an anthropomorphic phantom can ensure the accuracy of the treatment delivery. The phantoms commonly used for dosimetry are homogeneous solid water phantom which lacks the capability to measure the 3D dose distribution for heterogeneous tissues necessary for advanced radiotherapy techniques. Therefore, we developed an end-to-end 3D radiotherapy dose verification system based on MAX-HD anthropomorphic phantom (Integrated Medical Technologies Inc., Troy, New York) with bespoke intracranial insert for PRESAGE® dosimeter. In this study, several advanced radiotherapy treatment techniques of various levels of complexity; 3D-CRT, IMRT and VMAT treatment, were planned for a 20 mm diameter of a spherical target in the brain region and delivered to the phantom. The dosimeters were read out using an in-house developed optical computed tomography (OCT) imaging system known as 3DmicroHD-OCT. It was found that the measured dose distribution of the PRESAGE® when compared with the measured dose distribution of EBT film and Monaco TPS has a maximum difference of less than 3% for 3D-CRT, IMRT and VMAT treatment plans. The gamma analysis results of PRESAGE® in comparison to EBT film and Monaco TPS show pass rates of more than 95% for the criteria of 3% dose difference and 3 mm distance-to-agreement. This study proves the capability of PRESAGE® and bespoke MAX-HD phantom in conjunction with the 3DmicroHD-OCT system to measure 3D dose distribution for end-to-end dosimetry verification.

2.
Phys Eng Sci Med ; 46(1): 339-352, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36847965

ABSTRACT

Deep inspiration breath-hold radiotherapy (DIBH-RT) reduces cardiac dose by over 50%. However, poor breath-hold reproducibility could result in target miss which compromises the treatment success. This study aimed to benchmark the accuracy of a Time-of-Flight (ToF) imaging system for monitoring breath-hold during DIBH-RT. The accuracy of an Argos P330 3D ToF camera (Bluetechnix, Austria) was evaluated for patient setup verification and intra-fraction monitoring among 13 DIBH-RT left breast cancer patients. The ToF imaging was performed simultaneously with in-room cone beam computed tomography (CBCT) and electronic portal imaging device (EPID) imaging systems during patient setup and treatment delivery, respectively. Patient surface depths (PSD) during setup were extracted from the ToF and the CBCT images during free breathing and DIBH using MATLAB (MathWorks, Natick, MA) and the chest surface displacement were compared. The mean difference ± standard deviation, correlation coefficient, and limit of agreement between the CBCT and ToF were 2.88 ± 5.89 mm, 0.92, and - 7.36, 1.60 mm, respectively. The breath-hold stability and reproducibility were estimated using the central lung depth extracted from the EPID images during treatment and compared with the PSD from the ToF. The average correlation between ToF and EPID was - 0.84. The average intra-field reproducibility for all the fields was within 2.70 mm. The average intra-fraction reproducibility and stability were 3.74 mm, and 0.80 mm, respectively. The study demonstrated the feasibility of using ToF camera for monitoring breath-hold during DIBH-RT and shows good breath-hold reproducibility and stability during the treatment delivery.


Subject(s)
Breast Neoplasms , Humans , Female , Reproducibility of Results , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Tomography, X-Ray Computed , Respiration , Breath Holding
3.
Polymers (Basel) ; 14(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35890665

ABSTRACT

Recent advances in radiotherapy technology and techniques have allowed a highly conformal radiation to be delivered to the tumour target inside the body for cancer treatment. A three-dimensional (3D) dosimetry system is required to verify the accuracy of the complex treatment delivery. A 3D dosimeter based on the radiochromic response of a polymer towards ionising radiation has been introduced as the PRESAGE dosimeter. The polyurethane dosimeter matrix is combined with a leuco-dye and a free radical initiator, whose colour changes in proportion to the radiation dose. In the previous decade, PRESAGE gained improvement and enhancement as a 3D dosimeter. Notably, PRESAGE overcomes the limitations of its predecessors, the Fricke gel and the polymer gel dosimeters, which are challenging to fabricate and read out, sensitive to oxygen, and sensitive to diffusion. This article aims to review the characteristics of the radiochromic dosimeter and its clinical applications. The formulation of PRESAGE shows a delicate balance between the number of radical initiators, metal compounds, and catalysts to achieve stability, optimal sensitivity, and water equivalency. The applications of PRESAGE in advanced radiotherapy treatment verifications are also discussed.

4.
Rep Pract Oncol Radiother ; 26(5): 773-784, 2021.
Article in English | MEDLINE | ID: mdl-34760312

ABSTRACT

BACKGROUND: Nanotechnology application has successfully reached numerous scientific breakthroughs including in radiotherapy. However, the clinical application of nanoparticles requires more diligent research primarily on the crucial parameters such as nanoparticle sizes. This study is aimed to investigate the influence of bismuth oxide nanorod (Bi2O3-NR) sizes on radiosensitization effects on MCF-7 and HeLa cell lines for megavoltage photon and electron beam radiotherapy. MATERIALS AND METHODS: MCF-7 and HeLa cells were treated with and without 0.5 µMol/L of Bi2O3-NR of varying sizes (60, 70, 80, and 90 nm). The samples, including the control groups, were exposed to different radiation doses (0-10 Gy), using photon (6 MV and 10 MV), and electron beam (6 MeV and 12 MeV) radiotherapy. Clonogenic assay was performed, and sensitization enhancement ratio (SER) was determined from linear quadratic based cell survival curves. RESULTS: The results depicted that 60 nm Bi2O3-NR yields the most excellent SER followed by 70 nm Bi2O3-NR. Meanwhile, the 80 and 90 nm Bi2O3-NR showed an insignificant difference between treated and untreated cell groups. This study also found that MCF-7 was subjected to more cell death compared to HeLa. CONCLUSION: 60 nm Bi2O3-NR was the optimal Bi2O3-NR size to induce radiosensitization effects for megavoltage external beam radiotherapy. The SER in photon beam radiotherapy marked the highest compared to electron beam radiotherapy due to decreased primary radiation energy from multiple radiation interaction and higher Compton scattering.

5.
Appl Radiat Isot ; 176: 109812, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34166948

ABSTRACT

Investigation has been made of the radioluminescence dose response of Ge-doped silica flat and cylindrical fibers subjected to 6 and 10 MV photon beams. The fibers have been custom fabricated, obtaining Ge dopant concentrations of 6 and 10 mol%, subsequently cut into 20 mm lengths. Each sample has been exposed under a set of similar conditions, with use made of a fixed field size and source to surface distance (SSD). Investigation of dosimetric performance has involved radioluminescence linearity, dose-rate dependence, energy dependence, and reproducibility. Mass for mass, the 6 mol% Ge-doped samples provided the greater radioluminescence yield, with both flat and cylindrical fibers responding linearly to the absorbed dose. Further found has been that the cylindrical fibers provided a yield some 38% greater than that of the flat fibers. At 6 MV, the cylindrical fibers were also found to exhibit repeatability variation of <1%, superior to that of the flat fibers, offering strong potential for use in real-time dosimetry applications.


Subject(s)
Geranium/chemistry , Optical Fibers , Radiometry/methods , Silicon Dioxide/chemistry , Luminescence , Reproducibility of Results
6.
J Appl Clin Med Phys ; 22(7): 137-146, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34109736

ABSTRACT

PURPOSE: Each radiotherapy center should have a site-specific planning target volume (PTV) margins and image-guided (IG) radiotherapy (IGRT) correction protocols to compensate for the geometric errors that can occur during treatment. This study developed an automated algorithm for the calculation and evaluation of these parameters from cone beam computed tomography (CBCT)-based IG-intensity modulated radiotherapy (IG-IMRT) treatment. METHODS AND MATERIALS: A MATLAB algorithm was developed to extract the setup errors in three translational directions (x, y, and z) from the data logged by the CBCT system during treatment delivery. The algorithm also calculates the resulted population setup error and PTV margin based on the van Herk margin recipe and subsequently estimates their respective values for no action level (NAL) and extended no action level (eNAL) offline correction protocols. The algorithm was tested on 25 head and neck cancer (HNC) patients treated using IG-IMRT. RESULTS: The algorithms calculated that the HNC patients require a PTV margin of 3.1, 2.7, and 3.2 mm in the x-, y-, and z-direction, respectively, without IGRT. The margin can be reduced to 2.0, 2.2, and 3.0 mm in the x-, y-, and z-direction, respectively, with NAL and 1.6, 1.7, and 2.2 mm in the x-, y-, and z-direction, respectively, with eNAL protocol. The results obtained were verified to be the same with the margins calculated using an Excel spreadsheet. The algorithm calculates the weekly offline setup error correction values automatically and reduces the risk of input data error observed in the spreadsheet. CONCLUSIONS: In conclusion, the algorithm provides an automated method for optimization and reduction of PTV margin using logged setup errors from CBCT-based IGRT.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Algorithms , Cone-Beam Computed Tomography , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Radiotherapy Planning, Computer-Assisted , Radiotherapy Setup Errors/prevention & control
7.
Med Dosim ; 46(3): 310-317, 2021.
Article in English | MEDLINE | ID: mdl-33838998

ABSTRACT

Intensity-modulated radiotherapy (IMRT) treatment planning for head and neck cancer is challenging and complex due to many organs at risk (OAR) in this region. The experience and skills of planners may result in substantial variability of treatment plan quality. This study assessed the performance of IMRT planning in Malaysia and observed plan quality variation among participating centers. The computed tomography dataset containing contoured target volumes and OAR was provided to participating centers. This is to control variations in contouring the target volumes and OARs by oncologists. The planner at each center was instructed to complete the treatment plan based on clinical practice with a given prescription, and the plan was analyzed against the planning goals provided. The quality of completed treatment plans was analyzed using the plan quality index (PQI), in which a score of 0 indicated that all dose objectives and constraints were achieved. A total of 23 plans were received from all participating centers comprising 14 VMAT, 7 IMRT, and 2 tomotherapy plans. The PQI indexes of these plans ranged from 0 to 0.65, indicating a wide variation of plan quality nationwide. Results also reported 5 out of 21 plans achieved all dose objectives and constraints showing more professional training is needed for planners in Malaysia. Understanding of treatment planning system and computational physics could also help in improving the quality of treatment plans for IMRT delivery.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Head and Neck Neoplasms/radiotherapy , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
8.
Rep Pract Oncol Radiother ; 26(6): 892-898, 2021.
Article in English | MEDLINE | ID: mdl-34992860

ABSTRACT

BACKGROUND: This dosimetric study compared lateral wedge with medial only cardiac shielding (LEMONADE) technique, for left chest wall (LCW) irradiation against three other commonly used techniques. MATERIALS AND METHODS: Dosimetric parameters of 22 consecutive LBC patients treated using the P1 (LEMONADE technique) were compared with 3 other virtually reconstructed plans : no cardiac shielding with paired wedges; P2 (paired wedges and medial only Y-direction shielding) and P3 (paired wedges and bilateral Y-direction shielding). RESULTS: P1 showed better target volume (TV) coverage with the mean 90% isodose coverage of 85.59% ± 5.44 compared to 78.90% ± 8.59 and 74.22% ± 9.50 for P2 and P3, respectively. Compared to no cardiac shielding, for a 4.65% drop in TV coverage the V26Gy of heart dropped from 6.68% to a negligible 0.85% for P1. TV receiving < 30Gy is also significantly lesser for P1 compared to P2 and P3 (5.42% vs 10.64% and 15.8%), whilst there is a small difference of 2.75% between no cardiac shielding and P1. CONCLUSION: With the improvement in BC survival rate, cardiac toxicity associated with adjuvant irradiation for LBC is a major concern. P1 (LEMONADE) technique has a good compromise between cardiac sparing and target coverage and should suffice for most LCW irradiations. Furthermore, the LEMONADE technique is a simple, reproducible and involves fast planning for cardiac sparing, which is ideal for under-resourced departments with heavy workload.

9.
Biomed Phys Eng Express ; 6(6)2020 11 09.
Article in English | MEDLINE | ID: mdl-35102003

ABSTRACT

The purpose of this study is to develop a method for characterisation of time-of-flight (ToF) imaging system for application in deep inspiration breath-hold radiotherapy (DIBH-RT). The performance of an Argos 3D P330 ToF camera (Bluetechnix, Austria) was studied for patient surface monitoring during DIBH-RT using a phantom to simulate the intra-patient and inter-patient stability of the camera. Patient setup error was also simulated by positioning the phantom at predefined shift positions (2, 5 and 10 mm) from the isocentre. The localisation accuracy of the phantom was measured using ToF imaging system and repeated using CBCT imaging alone (CBCT) and simultaneously using ToF imaging during CBCT imaging (ToF-CBCT). The mean and SD of the setup errors obtained from each of the imaging methods were calculated. Student t-test was used to compare the mean setup errors. Correlation and Bland-Altman analysis were also performed. The intra-and inter-patient stability of the camera were within 0.31 mm and 0.74 mm, respectively. The localisation accuracy in terms of the mean ±SD of the measured setup errors were 0.34 ± 0.98 mm, 0.12 ± 0.34 mm, and -0.24 ± 1.42 mm for ToF, CBCT and ToF-CBCT imaging, respectively. A strong correlation was seen between the phantom position and the measured position using ToF (r = 0.96), CBCT (r = 0.99) as well as ToF-CBCT (r = 0.92) imaging. The limits of agreement from Bland Altman analysis between the phantom position and ToF, CBCT and ToF-CBCT measured positions were -1.52, 2.31 mm, -0.55, 0.78 mm; and -3.03, 2.55 mm, respectively. The sensor shows good stability and high accuracy comparable to similar sensors in the market. The method developed is useful for characterisation of an optical surface imaging system for application in monitoring DIBH-RT.


Subject(s)
Breath Holding , Radiotherapy, Image-Guided , Humans , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods
10.
Phys Med ; 67: 40-49, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31669669

ABSTRACT

OBJECTIVE: Medical physics in Malaysia is still considered a young profession. This workforce survey aims to understand the status, aspirations, motivation and experiences of medical physicists (MPs) in the country. A subsection of this survey also aims to understand the role of women. METHOD: A survey was carried out between April 20 and May 30, 2018 by a working group under the Medical Physics Division of the Malaysian Institute of Physics (IFM). The survey form was designed using Google Form and sent to various public and private institutions nationwide that employed MPs registered with IFM. RESULTS: A total of 106 responses (28% men and 72% women) were analysed. This represented 30% of the medical physics workforce. Majority of them had postgraduate degrees, but their clinical training is mostly obtained on the job with no certification. The number of low-ranking female MPs was disproportionately high. MPs worked long hours and achieving work-life balance (WLB) was a challenge. Factors that improved their WLB included working close to home, having a supportive manager and flexible working hours. Most MPs aspired to become professional and mentor younger compatriots, besides contributing to patient care and research. Gender discrimination was reportedly low. CONCLUSION: Medical physics in Malaysia is growing and has a strong representation of women. In future, they would probably take over the top management from their male counterparts, whose number had stagnated. A united effort was essential to set up a proper clinical training system to train clinically qualified MPs.


Subject(s)
Physics/statistics & numerical data , Surveys and Questionnaires , Workforce/statistics & numerical data , Adult , Demography , Educational Status , Female , Humans , Malaysia , Male , Middle Aged , Young Adult
11.
Phys Med ; 67: 34-39, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31655398

ABSTRACT

PURPOSE: Intensity Modulated Radiotherapy (IMRT) has changed the practice of radiotherapy since its implementation in the 1990s. The purpose of this study is to review current practice of IMRT in Malaysia. METHODS: A survey on medical physics aspects of IMRT is conducted on radiotherapy departments across Malaysia to assess the usage, experience and QA in IMRT, which is done for the first time in this country. A set of questionnaires was designed and sent to the physicist in charge for their responses. The questionnaire consisted of four sections; (i) Experience and qualification of medical physicists, (ii) CT simulation techniques (iii) Treatment planning and treatment unit, (iv) IMRT process, delivery and QA procedure. RESULTS: A total of 26 responses were collected, representing 26 departments out of 33 radiotherapy departments in operation across Malaysia (79% response rate). Results showed that the medical physics aspects of IMRT practice in Malaysia are homogenous, with some variations in certain areas of practices. Thirteen centres (52%) performed measurement-based QA using 2D array detector and analysed using gamma index criteria of 3%, 3 mm with variation confidence range. In relation to the IMRT delivery, 44% of Malaysia's physicist takes more than 8 h to plan a head and neck case compared to the UK study possibly due to the lack of professional training. CONCLUSIONS: This survey provides a picture of medical physics aspects of IMRT in Malaysia where the results/data can be used by radiotherapy departments to benchmark their local policies and practice.


Subject(s)
Physics , Radiotherapy, Intensity-Modulated , Clinical Competence/statistics & numerical data , Humans , Malaysia , Quality Control , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed
12.
Phys Med Biol ; 58(10): 3359-75, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23615376

ABSTRACT

This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.


Subject(s)
Radiotherapy, Intensity-Modulated/instrumentation , Semiconductors , Calibration , Feasibility Studies , Humans , Oxides , Radiotherapy Dosage , Time Factors
13.
Med Phys ; 38(11): 6152-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22047380

ABSTRACT

PURPOSE: The purpose of this work was to investigate the use of an experimental complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) for tracking of moving fiducial markers during radiotherapy. METHODS: The APS has an active area of 5.4 × 5.4 cm and maximum full frame read-out rate of 20 frame s(-1), with the option to read out a region-of-interest (ROI) at an increased rate. It was coupled to a 4 mm thick ZnWO4 scintillator which provided a quantum efficiency (QE) of 8% for a 6 MV x-ray treatment beam. The APS was compared with a standard iViewGT flat panel amorphous Silicon (a-Si) electronic portal imaging device (EPID), with a QE of 0.34% and a frame-rate of 2.5 frame s(-1). To investigate the ability of the two systems to image markers, four gold cylinders of length 8 mm and diameter 0.8, 1.2, 1.6, and 2 mm were placed on a motion-platform. Images of the stationary markers were acquired using the APS at a frame-rate of 20 frame s(-1), and a dose-rate of 143 MU min(-1) to avoid saturation. EPID images were acquired at the maximum frame-rate of 2.5 frame s(-1), and a reduced dose-rate of 19 MU min(-1) to provide a similar dose per frame to the APS. Signal-to-noise ratio (SNR) of the background signal and contrast-to-noise ratio (CNR) of the marker signal relative to the background were evaluated for both imagers at doses of 0.125 to 2 MU. RESULTS: Image quality and marker visibility was found to be greater in the APS with SNR ∼5 times greater than in the EPID and CNR up to an order of magnitude greater for all four markers. To investigate the ability to image and track moving markers the motion-platform was moved to simulate a breathing cycle with period 6 s, amplitude 20 mm and maximum speed 13.2 mm s(-1). At the minimum integration time of 50 ms a tracking algorithm applied to the APS data found all four markers with a success rate of ≥92% and positional error ≤90 µm. At an integration time of 400 ms the smallest marker became difficult to detect when moving. The detection of moving markers using the a-Si EPID was difficult even at the maximum dose-rate of 592 MU min(-1) due to the lower QE and longer integration time of 400 ms. CONCLUSIONS: This work demonstrates that a fast read-out, high QE APS may be useful in the tracking of moving fiducial markers during radiotherapy. Further study is required to investigate the tracking of markers moving in 3D in a treatment beam attenuated by moving patient anatomy. This will require a larger sensor with ROI read-out to maintain speed and a manageable data-rate.


Subject(s)
Fiducial Markers , Motion , Radiotherapy/standards , Semiconductors , Feasibility Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...