Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 10(11): 4531-4561, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32551042

ABSTRACT

Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex-specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south-western France) exhibited a smaller female size and less female-biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw-tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body size-climate relationships in intraspecific units.

2.
Mol Phylogenet Evol ; 141: 106615, 2019 12.
Article in English | MEDLINE | ID: mdl-31520778

ABSTRACT

The radiation of Palearctic green toads (Bufotes) holds great potential to evaluate the role of hybridization in phylogeography at multiple stages along the speciation continuum. With fifteen species representing three ploidy levels, this model system is particularly attractive to examine the causes and consequences of allopolyploidization, a prevalent yet enigmatic pathway towards hybrid speciation. Despite substantial efforts, the evolutionary history of this species complex remains largely blurred by the lack of consistency among the corresponding literature. To get a fresh, comprehensive view on Bufotes phylogeography, here we combined genome-wide multilocus analyses (RAD-seq) with an extensive compilation of mitochondrial, genome size, niche modelling, distribution and phenotypic (bioacoustics, morphometrics, toxin composition) datasets, representing hundreds of populations throughout Eurasia. We provide a fully resolved nuclear phylogeny for Bufotes and highlight exceptional cyto-nuclear discordances characteristic of complete mtDNA replacement (in 20% of species), mitochondrial surfing during post-glacial expansions, and the formation of homoploid hybrid populations. Moreover, we traced the origin of several allopolyploids down to species level, showing that all were exclusively fathered by the West Himalayan B. latastii but mothered by several diploid forms inhabiting Central Asian lowlands, an asymmetry consistent with hypotheses on mate choice and Dobzhansky-Muller incompatibilities. Their intermediate call phenotypes potentially allowed for rapid reproductive isolation, while toxin compositions converged towards the ecologically-closest parent. Across the radiation, we pinpoint a stepwise progression of reproductive isolation through time, with a threshold below which hybridizability is irrespective of divergence (<6My), above which species barely admix and eventually evolve different mating calls (6-10My), or can successfully cross-breed through allopolyploidization (>15My). Finally, we clarified the taxonomy of Bufotes (including genetic analyses of type series) and formally described two new species, B. cypriensis sp. nov. (endemic to Cyprus) and B. perrini sp. nov. (endemic to Central Asia). Embracing the genomic age, our framework marks the advent of a new exciting era for evolutionary research in these iconic amphibians.


Subject(s)
Biological Evolution , Bufonidae/physiology , Animals , Bufonidae/classification , Bufonidae/genetics , DNA, Mitochondrial/genetics , Genetic Speciation , Genome Size , Genome, Mitochondrial , Genomics , Hybridization, Genetic , Mitochondria/genetics , Phenotype , Phylogeny , Phylogeography , Principal Component Analysis , Time Factors
3.
Evol Biol ; 40: 420-438, 2013.
Article in English | MEDLINE | ID: mdl-23950617

ABSTRACT

The European common lizard, Zootoca vivipara, is the most widespread terrestrial reptile in the world. It occupies almost the entire Northern Eurasia and includes four viviparous and two oviparous lineages. We analysed how female snout-vent length (SVL), clutch size (CS), hatchling mass (HM), and relative clutch mass (RCM) is associated with the reproductive mode and climate throughout the species range and across the evolutionary lineages within Z. vivipara. The studied variables were scored for 1,280 females and over 3,000 hatchlings from 44 geographically distinct study samples. Across the species range, SVL of reproductive females tends to decrease in less continental climates, whereas CS corrected for female SVL and RCM tend to decrease in climates with cool summer. Both relationships are likely to indicate direct phenotypic responses to climate. For viviparous lineages, the pattern of co-variation between female SVL, CS and HM among populations is similar to that between individual females within populations. Consistent with the hypothesis that female reproductive output is constrained by her body volume, the oviparous clade with shortest retention of eggs in utero showed highest HM, the oviparous clade with longer egg retention showed lower HM, and clades with the longest egg retention (viviparous forms) had lowest HM. Viviparous populations exhibited distinctly lower HM than the other European lacertids of similar female SVL, many of them also displaying unusually high RCM. This pattern is consistent with Winkler and Wallin's model predicting a negative evolutionary link between the total reproductive investment and allocation to individual offspring.

SELECTION OF CITATIONS
SEARCH DETAIL
...