Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 15(1): 6, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29310664

ABSTRACT

BACKGROUND: Rice yellow mottle virus (RYMV) of the genus Sobemovirus is the most important viral pathogen of rice causing more damage to rice crop in Sub Saharan Africa. The aim of this study was to conduct pathogenic characterization of RYMV isolates from the Central African Republic (CAR) and to screen commonly cultivated rice accessions in the country for resistance/tolerance to the virus. METHODS: The pathogenicity of RYMV isolates was studied by mechanical inoculation with comparison to differential rice lines highly resistant to RYMV available at the Institute of Environment and Agricultural Research (INERA) in Burkina Faso. To screen commonly cultivated rice accessions in CAR, characterized RYMV isolates from the country were used as inoculum sources. Resistant breaking (RB) isolates were used to prepare RB-inoculum, whereas non-resistant breaking isolates (nRB) were used for nRB-inoculum. RESULTS: Overall 102 isolates used in this study, 29.4% were able to overcome the high resistance genes in the rice cultivars Gigante and Tog7291. All isolates were distributed within three distinct pathogenic profiles. The first profile constituted of 6.9% of the isolates was able to break down the resistance in rice cultivar Gigante only. The second pathogenic profile made of 19.6% of isolates was able to infect Tog7291 only. The third profile, 2.9% of isolates overcame simultaneously resistance genes in both rice cultivars Gigante and Tog7291. Out of isolates able to break down the resistance gene in cultivar Gigante, a single isolate was found to be non-infectious to the susceptible control IR64. Data from screening showed that all accessions were susceptible to RYMV, although IRAT213 was found to be partially resistant to both nRB-inoculum and RB-inoculum. CONCLUSION: The present study can be considered as the first in the Central African Republic, it gives a caution on the high risk of RYMV damage to rice production in the country. Beside, skills of pathogenic profiles of RYMV isolates will contribute to better disease management.


Subject(s)
Oryza/virology , Plant Diseases/virology , Plant Viruses/physiology , Biological Evolution , Central African Republic , Disease Resistance , Host-Pathogen Interactions , Phenotype , Virulence
2.
PLoS One ; 12(8): e0182749, 2017.
Article in English | MEDLINE | ID: mdl-28813463

ABSTRACT

After 2007, upsurges of whiteflies on cassava plants and high incidences of cassava diseases were observed in Central African Republic. This recent upsurge in the abundance of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) was directly linked to serious damage to cassava crops resulting from spread of whitefly-borne cassava mosaic geminiviruses (CMGs). There is currently very little information describing whitefly populations on cassava and associated crops in Central African Republic. The current study aimed to address this gap, and to determine whether the increasing damage associated with B. tabaci whiteflies was the consequence of a new invasion, or an upsurge of a local population. The molecular genetic identification and phylogenetic relationships of 898 B. tabaci adult individuals collected from representative locations (54) throughout CAR were determined based on their mitochondrial cytochrome oxidase I sequences (mtCOI). Field and ecological data were also collected from each site, including whitefly abundance, CMD incidence, host plants colonized by B. tabaci and agro-ecological zone. Phylogenetic analysis of the whitefly mtCOI sequences indicated that SSA1 (-SG1, -SG2), SSA3, MED, MEAM1 and Indian Ocean (IO) putative species occur in CAR. One specific haplotype of SSA1-SG1 (SSA1-SG1-P18F5) predominated on most cassava plants and at the majority of sites. This haplotype was identical to the SSA1-SG1 Mukono8-4 (KM377961) haplotype that was recorded from Uganda but that also occurs widely in CMD pandemic-affected areas of East Africa. These results suggest that the SSA1-SG1-P18F5 haplotype occurring in CAR represents a recent invasive population, and that it is the likely cause of the increased spread and severity of CMD in CAR. Furthermore, the high mtDNA sequence diversity observed for SSA1 and its broad presence on all sites and host plants sampled suggest that this genetic group was the dominant resident species even before the arrival of this new invasive haplotype.


Subject(s)
Electron Transport Complex IV/genetics , Genetic Variation/genetics , Hemiptera/classification , Hemiptera/genetics , Manihot/virology , Animals , Begomovirus/physiology , Central African Republic , Crops, Agricultural/virology , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Haplotypes , Hemiptera/virology , Phylogeny , Plant Diseases/virology
3.
BMC Evol Biol ; 16: 182, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27600545

ABSTRACT

BACKGROUND: Cassava mosaic disease (CMD) in Madagascar is caused by a complex of at least six African cassava mosaic geminivirus (CMG) species. This provides a rare opportunity for a comparative study of the evolutionary and epidemiological dynamics of distinct pathogenic crop-infecting viral species that coexist within the same environment. The genetic and spatial structure of CMG populations in Madagascar was studied and Bayesian phylogeographic modelling was applied to infer the origins of Madagascan CMG populations within the epidemiological context of related populations situated on mainland Africa and other south western Indian Ocean (SWIO) islands. RESULTS: The isolation and analysis of 279 DNA-A and 117 DNA-B sequences revealed the presence in Madagascar of four prevalent CMG species (South African cassava mosaic virus, SACMV; African cassava mosaic virus, ACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV), and of numerous CMG recombinants that have, to date, only ever been detected on this island. SACMV and ACMV, the two most prevalent viruses, displayed low degrees of genetic diversity and have most likely been introduced to the island only once. By contrast, EACMV-like CMG populations (consisting of East African cassava mosaic virus, EAMCKV, EACMCV and complex recombinants of these) were more diverse, more spatially structured, and displayed evidence of at least three independent introductions from mainland Africa. Although there were no statistically supported virus movement events between Madagascar and the other SWIO islands, at least one mainland African ACMV variant likely originated in Madagascar. CONCLUSIONS: Our study highlights both the complexity of CMD in Madagascar, and the distinct evolutionary and spatial dynamics of the different viral species that collectively are associated with this disease. Given that more distinct CMG species and recombinants have been found in Madagascar than any other similarly sized region of the world, the risks of recombinant CMG variants emerging on this island are likely to be higher than elsewhere. Evidence of an epidemiological link between Madagascan and mainland African CMGs suggests that the consequences of such emergence events could reach far beyond the shores of this island.


Subject(s)
Begomovirus/genetics , Biological Evolution , Manihot/virology , Bayes Theorem , DNA, Viral/genetics , Genetic Variation , Madagascar , Phylogeography , Plant Diseases/virology , Recombination, Genetic
4.
J Virol ; 85(18): 9623-36, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21715477

ABSTRACT

Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Maize streak virus/isolation & purification , Phylogeography , Plant Diseases/virology , Zea mays/virology , Africa , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Maize streak virus/classification , Molecular Epidemiology , Molecular Sequence Data , Sequence Analysis, DNA
5.
Virol J ; 6: 194, 2009 Nov 10.
Article in English | MEDLINE | ID: mdl-19903330

ABSTRACT

BACKGROUND: Panicum streak virus (PanSV; Family Geminiviridae; Genus Mastrevirus) is a close relative of Maize streak virus (MSV), the most serious viral threat to maize production in Africa. PanSV and MSV have the same leafhopper vector species, largely overlapping natural host ranges and similar geographical distributions across Africa and its associated Indian Ocean Islands. Unlike MSV, however, PanSV has no known economic relevance. RESULTS: Here we report on 16 new PanSV full genome sequences sampled throughout Africa and use these together with others in public databases to reveal that PanSV and MSV populations in general share very similar patterns of genetic exchange and geographically structured diversity. A potentially important difference between the species, however, is that the movement of MSV strains throughout Africa is apparently less constrained than that of PanSV strains. Interestingly the MSV-A strain which causes maize streak disease is apparently the most mobile of all the PanSV and MSV strains investigated. CONCLUSION: We therefore hypothesize that the generally increased mobility of MSV relative to other closely related species such as PanSV, may have been an important evolutionary step in the eventual emergence of MSV-A as a serious agricultural pathogen.The GenBank accession numbers for the sequences reported in this paper are GQ415386-GQ415401.


Subject(s)
DNA, Viral/genetics , Geminiviridae/genetics , Genetic Variation , Genome, Viral , Plant Diseases/virology , Recombination, Genetic , Sequence Analysis, DNA , Africa , Cluster Analysis , DNA, Viral/chemistry , Geminiviridae/isolation & purification , Geography , Indian Ocean Islands , Molecular Sequence Data , Panicum/virology , Phylogeny , Sequence Homology , Zea mays/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...