Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 38: 101790, 2021 01.
Article in English | MEDLINE | ID: mdl-33202300

ABSTRACT

Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant antioxidant, anti-inflammatory and immunomodulatory activities through beneficial modulation of several significant inflammatory cytokines in vitro and in vivo. We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be non-toxic, non-teratogenic and readily distributed in the body of mice. Moreover, it significantly accelerates excisional wound healing, reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation and attenuates age-associated oxidative stress in skin, demonstrating both skin regenerative and geroprotective properties of RM191A.


Subject(s)
Skin Neoplasms , Skin , Animals , Epidermis , Mice , Superoxide Dismutase , Tetradecanoylphorbol Acetate
2.
J Neuroimmunol ; 349: 577392, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33007647

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disorder where auto-aggressive T cells target the central nervous system (CNS), causing demyelination. The trans-endothelial migration of leucocytes across the blood-brain barrier (BBB) is one of the earliest CNS events in MS pathogenesis. We examined the effect of the disease state and treatment with fingolimod on the transmigration of peripheral blood mononuclear cells (PBMCs) in an in vitro BBB model. Patients' leucocyte numbers, subsets and phenotypes were assessed by flow cytometry. As expected, fingolimod treatment induced a significant reduction in T cell and B cell numbers compared to untreated MS patients and healthy controls. Interestingly fingolimod led to a marked reduction of CD4+ and a significant increase in CD8+ cell numbers. In migrated cells, only CD3+ cell numbers were reduced in fingolimod-treated, compared to untreated patients; it had no effect on B cell or monocyte transmigration. T cells were then differentiated into naïve, effector and memory subsets based on their expression of CCR7. This showed that MS patients had increased numbers of effector memory CD4+ cells re-expressing CD45RA (TEMRA) and a decrease in central memory (CM) CD8+ cells. The former was corrected by fingolimod, while the latter was not. CM CD4+ and CD8+ cells migrated across BBB more efficiently in fingolimod-treated patients. We found that while fingolimod reduced the proportions of naïve CD19+ B cells, it significantly increased the proportions of these cells which migrated. When B cells were further stratified based on CD24, CD27 and CD38 expression, the only effect of fingolimod was an enhancement of CD24hiCD27+ B cell migration, compared to untreated MS patients. The migratory capacities of CD8hi Natural Killer (NK), CD8dim NK and NK-T cells were also reduced by fingolimod. While the disease-modifying effects of fingolimod are currently explained by its effect on reducing circulating auto-aggressive lymphocytes, our data suggests that fingolimod may also have a direct though differential effect on the trans-endothelial migration of circulating lymphocyte populations.


Subject(s)
Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Lymphocyte Subsets/drug effects , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Transendothelial and Transepithelial Migration/drug effects , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Female , Fingolimod Hydrochloride/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Lymphocyte Subsets/metabolism , Male , Transendothelial and Transepithelial Migration/physiology , Treatment Outcome
3.
Clin Transl Immunology ; 9(5): e01133, 2020 May.
Article in English | MEDLINE | ID: mdl-32355561

ABSTRACT

OBJECTIVES: Disease-modifying therapies (DMTs) targeting B cells are amongst the most effective for preventing multiple sclerosis (MS) progression. IgG3 antibodies and their uncharacterised B-cell clones are predicted to play a pathogenic role in MS. Identifying subsets of IgG3 + B cells involved in MS progression could improve diagnosis, could inform timely disease intervention and may lead to new DMTs that target B cells more specifically. METHODS: We designed a 31-parameter B-cell-focused mass cytometry panel to interrogate the role of peripheral blood IgG3 + B cells in MS progression of two different patient cohorts: one to investigate the B-cell subsets involved in conversion from clinically isolated syndrome (CIS) to MS; and another to compare MS patients with inactive or active stages of disease. Each independent cohort included a group of non-MS controls. RESULTS: Nine distinct CD20+IgD-IgG3 + B-cell subsets were identified. Significant changes in the proportion of CD21+CD24+CD27-CD38- and CD27+CD38hiCD71hi memory B-cell subsets correlated with changes in serum IgG3 levels and time to conversion from CIS to MS. The same CD38- double-negative B-cell subset was significantly elevated in MS patients with active forms of the disease. A third CD21+CD24+CD27+CD38- subset was elevated in patients with active MS, whilst narrowband UVB significantly reduced the proportion of this switched-memory B-cell subset. CONCLUSION: We have identified previously uncharacterised subsets of IgG3 + B cells and shown them to correlate with autoimmune attacks on the central nervous system (CNS). These results highlight the potential for therapies that specifically target IgG3 + B cells to impact MS progression.

4.
Malar J ; 17(1): 192, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29747626

ABSTRACT

BACKGROUND: Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. RESULTS: The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA-miR-146a and miR-193b-were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. CONCLUSIONS: These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.


Subject(s)
Brain/parasitology , Cell-Derived Microparticles/parasitology , Malaria, Cerebral/pathology , Malaria, Cerebral/physiopathology , Plasmodium berghei/physiology , Plasmodium yoelii/physiology , Animals , Brain/pathology , Brain/physiopathology , Malaria/pathology , Malaria/physiopathology , Mice , Mice, Inbred CBA , MicroRNAs/metabolism
5.
Prog Neurobiol ; 155: 76-95, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27072742

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Neuroinflammation leads to microglia activation and release of a large number of proinflammatory mediators. The kynurenine pathway (KP) of tryptophan catabolism is one of the major regulators of the immune response and is also likely to be implicated in the inflammatory and neurotoxic events in Parkinsonism. Several neuroactive compounds are produced through the KP that can be either a neurotoxic, neuroprotective or immunomodulator. Among these metabolites kynurenic acid (KYNA), produced by astrocytes, is considered as neuroprotective whereas quinolinic acid (QUIN), released by activated microglia, can activate the N-methyl-d-aspartate (NMDA) receptor-signalling pathway, leading to excitotoxicity and amplify the inflammatory response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that some of the KP metabolites could be used as prognostic biomarkers and that pharmacological modulators of the KP enzymes could represent a new therapeutic strategy for PD.


Subject(s)
Kynurenine/metabolism , Parkinson Disease/metabolism , Animals , Humans , Kynurenine/immunology , Parkinson Disease/immunology
6.
Mult Scler ; 22(14): 1883-1887, 2016 12.
Article in English | MEDLINE | ID: mdl-26931477

ABSTRACT

BACKGROUND: No molecular marker can monitor disease progression and treatment efficacy in multiple sclerosis (MS). Circulating microparticles represent a potential snapshot of disease activity at the blood brain barrier. OBJECTIVES AND METHODS: To profile plasma microparticles by flow cytometry in MS and determine how fingolimod could impact endothelial microparticles production. RESULTS: In non-treated MS patients compared to healthy and fingolimod-treated patients, endothelial microparticles were higher, while B-cell-microparticle numbers were lower. Fingolimod dramatically reduced tumour necrosis factor (TNF)-induced endothelial microparticle release in vitro. CONCLUSION: Fingolimod restored dysregulated endothelial and B-cell-microparticle numbers, which could serve as a biomarker in MS.


Subject(s)
B-Lymphocytes , Cell-Derived Microparticles , Endothelial Cells , Fingolimod Hydrochloride/pharmacology , Immunosuppressive Agents/pharmacology , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Adult , Endothelium, Vascular/drug effects , Female , Fingolimod Hydrochloride/administration & dosage , Humans , Immunosuppressive Agents/administration & dosage , Male , Middle Aged
7.
PLoS One ; 9(11): e112945, 2014.
Article in English | MEDLINE | ID: mdl-25415278

ABSTRACT

The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+)). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+), which is necessary for energy production and DNA repair.


Subject(s)
Biosynthetic Pathways , Brain Neoplasms/metabolism , Glioma/metabolism , Kynurenine/biosynthesis , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/physiopathology , CD11b Antigen/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Cells, Cultured , Chromatography, High Pressure Liquid , Disaccharides , Gene Expression/drug effects , Glial Fibrillary Acidic Protein/metabolism , Glioma/genetics , Glioma/physiopathology , Glucuronates , Humans , Immunohistochemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/pharmacology , Kynurenic Acid/blood , Kynurenic Acid/metabolism , Kynurenine/blood , Picolinic Acids/blood , Picolinic Acids/metabolism , Quinolinic Acid/blood , Quinolinic Acid/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tryptophan/blood , Tryptophan/metabolism , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism , Tumor Cells, Cultured
8.
Parkinsons Dis ; 2011: 716859, 2011.
Article in English | MEDLINE | ID: mdl-21687761

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterised by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Activated microglia themselves release a large number of inflammatory mediators thus perpetuating neuroinflammation and neurotoxicity. The Kynurenine pathway (KP), the main catabolic pathway for tryptophan, is one of the major regulators of the immune response and may also be implicated in the inflammatory response in parkinsonism. The KP generates several neuroactive compounds and therefore has either a neurotoxic or neuroprotective effect. Several of these molecules produced by microglia can activate the N-methyl-D-aspartate (NMDA) receptor-signalling pathway, leading to an excitotoxic response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that pharmacological modulation of the KP will represent a new therapeutic strategy for PD.

9.
J Biol Chem ; 285(34): 26097-106, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20522546

ABSTRACT

A role for Zn(2+) in accelerating wound healing is established, yet, the signaling pathways linking Zn(2+) to tissue repair are not well known. We show that in the human HaCaT keratinocytes extracellular Zn(2+) induces a metabotropic Ca(2+) response that is abolished by silencing the expression of the G-protein-coupled receptor GPR39, suggesting that this Zn(2+)-sensing receptor, ZnR, is mediating the response. Keratinocytic-ZnR signaling is highly selective for Zn(2+) and can be triggered by nanomolar concentrations of this ion. Interestingly, Zn(2+) was also released following cellular injury, as monitored by a specific non-permeable fluorescent Zn(2+) probe, ZnAF-2. Chelation of Zn(2+) and scavenging of ATP from conditioned medium, collected from injured epithelial cultures, was sufficient to eliminate the metabotropic Ca(2+) signaling. The signaling triggered by Zn(2+), via ZnR, or by ATP further activated MAP kinase and induced up-regulation of the sodium/proton exchanger NHE1 activity. Finally, activation of ZnR/GPR39 signaling or application of ATP enhanced keratinocytes scratch closure in an in vitro model. Thus our results indicate that extracellular Zn(2+), which is either applied or released following injury, activates ZnR/GPR39 to promote signaling leading to epithelial repair.


Subject(s)
Keratinocytes/pathology , Receptors, G-Protein-Coupled/physiology , Wound Healing , Zinc/metabolism , Adenosine Triphosphate , Calcium Signaling , Cell Line , Epithelial Cells , Humans , Keratinocytes/physiology , Molecular Probes , Pyridines
SELECTION OF CITATIONS
SEARCH DETAIL
...