Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(16): 166401, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124840

ABSTRACT

Sr_{2}MoO_{4} is isostructural to the unconventional superconductor Sr_{2}RuO_{4} but with two electrons instead of two holes in the Mo/Ru-t_{2g} orbitals. Both materials are Hund's metals, but while Sr_{2}RuO_{4} has a van Hove singularity in close proximity to the Fermi surface, the van Hove singularity of Sr_{2}MoO_{4} is far from the Fermi surface. By using density functional plus dynamical mean-field theory, we determine the relative influence of van Hove and Hund's metal physics on the correlation properties. We show that theoretically predicted signatures of Hund's metal physics occur on the occupied side of the electronic spectrum of Sr_{2}MoO_{4}, identifying Sr_{2}MoO_{4} as an ideal candidate system for a direct experimental confirmation of the theoretical concept of Hund's metals via photoemission spectroscopy.

2.
Phys Rev Lett ; 124(1): 016401, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31976705

ABSTRACT

The crossover from fluctuating atomic constituents to a collective state as one lowers temperature or energy is at the heart of the dynamical mean-field theory description of the solid state. We demonstrate that the numerical renormalization group is a viable tool to monitor this crossover in a real-materials setting. The renormalization group flow from high to arbitrarily small energy scales clearly reveals the emergence of the Fermi-liquid state of Sr_{2}RuO_{4}. We find a two-stage screening process, where orbital fluctuations are screened at much higher energies than spin fluctuations, and Fermi-liquid behavior, concomitant with spin coherence, below a temperature of 25 K. By computing real-frequency correlation functions, we directly observe this spin-orbital scale separation and show that the van Hove singularity drives strong orbital differentiation. We extract quasiparticle interaction parameters from the low-energy spectrum and find an effective attraction in the spin-triplet sector.

SELECTION OF CITATIONS
SEARCH DETAIL
...