Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18724, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333578

ABSTRACT

We present the element-specific and time resolved visualization of uniform ferromagnetic resonance excitations of a Permalloy (Py) disk-Cobalt (Co) stripe bilayer microstructure. The transverse high frequency component of the resonantly excited magnetization is sampled in the ps regime by a combination of ferromagnetic resonance (FMR) and scanning transmission X-ray microscopy (STXM-FMR) recording snapshots of the local magnetization precession of Py and Co with nanometer spatial resolution. The approach allows us to individually image the resonant dynamic response of each element, and we find that angular momentum is transferred from the Py disk to the Co stripe and vice versa at their respective resonances. The integral (cavity) FMR spectrum of our sample shows an unexpected additional third resonance. This resonance is observed in the STXM-FMR experiments as well. Our microscopic findings suggest that it is governed by magnetic exchange between Py and Co, showing for the Co stripe a difference in relative phase of the magnetization due to stray field influence.

3.
Sci Rep ; 11(1): 13719, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215776

ABSTRACT

The development of magnetocaloric materials represents an approach to enable efficient and environmentally friendly refrigeration. It is envisioned as a key technology to reduce CO2 emissions of air conditioning and cooling systems. Fe-Rh has been shown to be one of the best-suited materials in terms of heat exchange per material volume. However, the Fe-Rh magnetocaloric response depends on its composition. Hence, the adaptation of material processing routes that preserve the Fe-Rh magnetocaloric response in the generated structures is a fundamental step towards the industrial development of this cooling technology. To address this challenge, the temperature-dependent properties of laser synthesized Fe-Rh nanoparticles and the laser printing of Fe-Rh nanoparticle inks are studied to generate 2D magnetocaloric structures that are potentially interesting for applications such as waste heat management of compact electrical appliances or thermal diodes, switches, and printable magnetocaloric media. The magnetization and temperature dependence of the ink's γ-FeRh to B2-FeRh magnetic transition is analyzed throughout the complete process, finding a linear increase of the magnetization M (0.8 T, 300 K) up to 96 Am2/kg with ca. 90% of the γ-FeRh being transformed permanently into the B2-phase. In 2D structures, magnetization values of M (0.8 T, 300 K) ≈ 11 Am2/kg could be reached by laser sintering, yielding partial conversion to the B2-phase equivalent to long-time heating temperature of app. 600 K, via this treatment. Thus, the proposed procedure constitutes a robust route to achieve the generation of magnetocaloric structures.

4.
Ultramicroscopy ; 233: 113392, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-35016129

ABSTRACT

Progress towards analysing transitions between steady states demands improvements in time-resolved imaging, both for fundamental research and for applications in information technology. Transmission electron microscopy is a powerful technique for investigating the atomic structure, chemical composition and electromagnetic properties of materials with high spatial resolution and precision. However, the extraction of information about dynamic processes in the ps time regime is often not possible without extensive modification to the instrument while requiring careful control of the operation conditions to not compromise the beam quality. Here, we avoid these drawbacks by combining a delay line detector with continuous illumination in a transmission electron microscope. We visualize the gyration of a magnetic vortex core in real space and show that magnetization dynamics up to frequencies of 2.3 GHz can be resolved with down to ∼122ps temporal resolution by studying the interaction of an electron beam with a microwave magnetic field. In the future, this approach promises to provide access to resonant dynamics by combining high spatial resolution with sub-ns temporal resolution.

5.
Sci Rep ; 10(1): 2861, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32071362

ABSTRACT

Strong unidirectional anisotropy in bulk polycrystalline B20 FeGe has been measured by ferromagnetic resonance spectroscopy. Such anisotropy is not present in static magnetometry measurements. B20 FeGe exhibits inherent Dzyaloshinskii-Moriya interaction, resulting in a nonreciprocal spin-wave dispersion. Bulk and micron sized samples were produced and characterized. By X-band ferromagnetic resonance spectroscopy at 276 K ± 1 K, near the Curie temperature, a distribution of resonance modes was observed in accordance with the cubic anisotropy of FeGe. This distribution exhibits a unidirectional anisotropy, i.e. shift of the resonance field under field inversion, of KUD = 960 J/m3 ± 10 J/m3, previously unknown in bulk ferromagnets. Additionally, more than 25 small amplitude standing spin wave modes were observed inside a micron sized FeGe wedge, measured at 293 K ± 2 K. These modes also exhibit unidirectional anisotropy. This effect, only dynamically measurable and not detectable in static magnetometry measurements, may open new possibilities for directed spin transport in chiral magnetic systems.

6.
Nat Commun ; 10(1): 4345, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554798

ABSTRACT

Spin wave logic circuits using quantum oscillations of spins (magnons) as carriers of information have been proposed for next generation computing with reduced energy demands and the benefit of easy parallelization. Current realizations of magnonic devices have micrometer sized patterns. Here we demonstrate the feasibility of biogenic nanoparticle chains as the first step to truly nanoscale magnonics at room temperature. Our measurements on magnetosome chains (ca 12 magnetite crystals with 35 nm particle size each), combined with micromagnetic simulations, show that the topology of the magnon bands, namely anisotropy, band deformation, and band gaps are determined by local arrangement and orientation of particles, which in turn depends on the genotype of the bacteria. Our biomagnonic approach offers the exciting prospect of genetically engineering magnonic quantum states in nanoconfined geometries. By connecting mutants of magnetotactic bacteria with different arrangements of magnetite crystals, novel architectures for magnonic computing may be (self-) assembled.


Subject(s)
Magnetosomes/metabolism , Magnetospirillum/metabolism , Nanoparticles/chemistry , Quantum Theory , Anisotropy , Computer Simulation , Crystallization , Genotype , Magnetics , Magnetosomes/chemistry , Magnetosomes/genetics , Magnetospirillum/chemistry , Magnetospirillum/genetics , Mutation , Particle Size , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...