Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Animals (Basel) ; 13(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760254

ABSTRACT

Metritis is a postpartum uterine disease with greater incidence in primiparous than in multiparous cows. In primiparous cows, the impact on production and health is lessened, presumably due to a superior immune response. Here, we tested whether an in vivo model of clinical metritis induction developed for postpartum multiparous Holstein cows would produce similar results in primiparous cows. Thirty-six cows were randomly assigned to one of three groups and received intrauterine infusion within 24 h of parturition. The controls were infused with sterile saline; the low-dose group received a bacterial cocktail containing 103 cfu of Escherichia coli, Trueperella pyogenes, and Fusobacterium necrophorum; and the high-dose group were infused with 106 cfu of the same cocktail. Production, health traits, and the vaginal discharge culture were assessed daily, from enrollment until 14 d in milk. Clinical metritis occurred in 64% of high-dose cows, 33% of the controls, and 42% of low-dose cows, with no significant difference of incidence between groups. However, when accounting by time, high-dose cows had a 2.7 times greater hazard of metritis compared with the controls. The bacterial challenge affected milk production and dry matter intake tended to decrease. In the high-dose group, a greater growth of F. necrophorum in the selective medium was also observed, suggesting an association with metritis. Therefore, this study suggests intrauterine inoculation with 106 cfu of this bacterial cocktail elicits physical and clinical outcomes consistent with clinical metritis.

2.
PLoS One ; 10(7): e0133674, 2015.
Article in English | MEDLINE | ID: mdl-26193110

ABSTRACT

Metagenomic methods amplifying 16S ribosomal RNA genes have been used to describe the microbial diversity of healthy skin and lesion stages of bovine digital dermatitis (DD) and to detect critical pathogens involved with disease pathogenesis. In this study, we characterized the microbiome and for the first time, the composition of functional genes of healthy skin (HS), active (ADD) and inactive (IDD) lesion stages using a whole-genome shotgun approach. Metagenomic sequences were annotated using MG-RAST pipeline. Six phyla were identified as the most abundant. Firmicutes and Actinobacteria were the predominant bacterial phyla in the microbiome of HS, while Spirochetes, Bacteroidetes and Proteobacteria were highly abundant in ADD and IDD. T. denticola-like, T. vincentii-like and T. phagedenis-like constituted the most abundant species in ADD and IDD. Recruitment plots comparing sequences from HS, ADD and IDD samples to the genomes of specific Treponema spp., supported the presence of T. denticola and T. vincentii in ADD and IDD. Comparison of the functional composition of HS to ADD and IDD identified a significant difference in genes associated with motility/chemotaxis and iron acquisition/metabolism. We also provide evidence that the microbiome of ADD and IDD compared to that of HS had significantly higher abundance of genes associated with resistance to copper and zinc, which are commonly used in footbaths to prevent and control DD. In conclusion, the results from this study provide new insights into the HS, ADD and IDD microbiomes, improve our understanding of the disease pathogenesis and generate unprecedented knowledge regarding the functional genetic composition of the digital dermatitis microbiome.


Subject(s)
Cattle Diseases/genetics , Cattle Diseases/microbiology , Digital Dermatitis/genetics , Digital Dermatitis/microbiology , Microbiota , Animals , Biopsy , Cattle , Chemotaxis , Copper/chemistry , Digital Dermatitis/pathology , Drug Resistance, Bacterial , Female , Flagella/genetics , Metagenome , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Treponema/genetics , Zinc/chemistry
3.
PLoS One ; 10(3): e0120504, 2015.
Article in English | MEDLINE | ID: mdl-25781328

ABSTRACT

Bovine digital dermatitis (DD) is the most important infectious disease associated with lameness in cattle worldwide. Since the disease was first described in 1974, a series of Treponema species concurrent with other microbes have been identified in DD lesions, suggesting a polymicrobial etiology. However, the pathogenesis of DD and the source of the causative microbes remain unclear. Here we characterized the microbiomes of healthy skin and skin lesions in dairy cows affected with different stages of DD and investigated the gut microbiome as a potential reservoir for microbes associated with this disease. Discriminant analysis revealed that the microbiomes of healthy skin, active DD lesions (ulcerative and chronic ulcerative) and inactive DD lesions (healing and chronic proliferative) are completely distinct. Treponema denticola, Treponema maltophilum, Treponema medium, Treponema putidum, Treponema phagedenis and Treponema paraluiscuniculi were all found to be present in greater relative abundance in active DD lesions when compared with healthy skin and inactive DD lesions, and these same Treponema species were nearly ubiquitously present in rumen and fecal microbiomes. The relative abundance of Candidatus Amoebophilus asiaticus, a bacterium not previously reported in DD lesions, was increased in both active and inactive lesions when compared with healthy skin. In conclusion, our data support the concept that DD is a polymicrobial disease, with active DD lesions having a markedly distinct microbiome dominated by T. denticola, T. maltophilum, T. medium, T. putidum, T. phagedenis and T. paraluiscuniculi. Furthermore, these Treponema species are nearly ubiquitously found in rumen and fecal microbiomes, suggesting that the gut is an important reservoir of microbes involved in DD pathogenesis. Additionally, the bacterium Candidatus Amoebophilus asiaticus was highly abundant in active and inactive DD lesions.


Subject(s)
Digital Dermatitis/microbiology , Intestines/microbiology , Microbiota , Animals , Cattle , Digital Dermatitis/pathology , Treponema/classification , Treponema/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...