Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 88(2): 143-51, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16545939

ABSTRACT

Segmental duplications (SDs) play a key role in genome evolution by providing material for gene diversification and creation of variant or novel functions. They also mediate recombinations, resulting in microdeletions, which have occasionally been associated with human genetic diseases. Here, we present a detailed analysis of a large genomic region (about 240 kb), located on human chromosome 1q22, that contains a tandem SD, SD1q22. This duplication occurred about 37 million years ago in a lineage leading to anthropoid primates, after their separation from prosimians but before the Old and New World monkey split. We reconstructed the hypothetical unduplicated ancestral locus and compared it with the extant SD1q22 region. Our data demonstrate that, as a consequence of the duplication, new anthropoid-specific genetic material has evolved in the resulting paralogous segments. We describe the emergence of two new genes, whose new functions could contribute to the speciation of anthropoid primates. Moreover, we provide detailed information regarding structure and evolution of the SD1q22 region that is a prerequisite for future studies of its anthropoid-specific functions and possible linkage to human genetic disorders.


Subject(s)
Chromosomes, Human, Pair 1/genetics , Evolution, Molecular , Gene Duplication , Primates/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Co-Repressor Proteins , DNA/metabolism , DNA-Binding Proteins , Genes, Duplicate , Humans , Models, Genetic , Platyrrhini/genetics , RNA/metabolism , RNA-Binding Proteins , Ribosomal Proteins/genetics , Sequence Analysis, DNA , Species Specificity , Transcription Factors/genetics , Transcription Factors/metabolism
2.
BMC Genomics ; 5: 72, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15453915

ABSTRACT

BACKGROUND: Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. METHODS: We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest) of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. RESULTS: Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. CONCLUSIONS: We propose to combine the computational prediction of alternative splice isoforms with experimental validation for efficient delineation of an accurate set of tissue-specific transcripts.


Subject(s)
Alternative Splicing/genetics , Expressed Sequence Tags , Brain Chemistry/genetics , Computational Biology/methods , Female , Humans , Male , Organ Specificity/genetics , Placenta/chemistry , Placenta/metabolism , Predictive Value of Tests , Protein Isoforms/genetics , Testis/chemistry , Testis/metabolism
3.
Hepatology ; 39(3): 645-54, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14999683

ABSTRACT

CD95 (APO-1/Fas)-mediated apoptosis of hepatocytes plays a central role in the pathophysiology of various human liver diseases. Hepatocyte growth factor (HGF) was shown to exert antiapoptotic functions in rodent hepatocytes. We previously showed that primary human hepatocytes (PHH) are a valuable tool for the investigation of apoptotic processes in liver cells. In this study, we analyzed the influence of HGF on CD95-mediated apoptosis of PHH and its molecular determinants. HGF significantly inhibited CD95-mediated apoptosis of PHH as well as cleavage of caspase-8 and poly (ADP-ribose)polymerase. HGF transcriptionally induced the expression of the anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1). In contrary, HGF did not alter the expression levels of Bcl-2 or Bcl-x(L). HGF activated survival pathways such as the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK and the signal transducer and activator of transcription 3 (STAT3) pathway. Notably, HGF triggered serine(727)--but not tyrosine(705)--phosphorylation of STAT3. Pretreatment of PHH with the PI3K inhibitor LY294002 as well as adenoviral transduction of dominant negative Akt1 prevented HGF-mediated Mcl-1 induction and reversed the antiapoptotic effects of HGF. In conclusion, HGF confers survival of PHH by activation of the PI3K/Akt pathway. PI3K/Akt activation by HGF results in the induction of antiapoptotic proteins such as Mcl-1. Thus, application of HGF may be a therapeutic approach to prevent CD95-mediated hepatocellular damage in human liver diseases.


Subject(s)
Apoptosis/physiology , Hepatocyte Growth Factor/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/physiology , fas Receptor/physiology , Apoptosis/drug effects , Cell Survival/physiology , Cells, Cultured , Humans , Myeloid Cell Leukemia Sequence 1 Protein , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...