Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Insects ; 14(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37887809

ABSTRACT

Insect viruses have been described from numerous lineages, yet patterns of genetic exchange and viral prevalence, which are essential to understanding host-virus coevolution, are rarely studied. In Helicoverpa zea, the virus HzNV-2 can cause deformity of male and female genitalia, resulting in sterility. Using ddPCR, we found that male H. zea with malformed genitalia (agonadal) contained high levels of HzNV-2 DNA, confirming previous work. HzNV-2 was found to be prevalent throughout the United States, at more than twice the rate of the baculovirus HaSNPV, and that it contained several host-acquired DNA sequences. HzNV-2 possesses four recently endogenized lepidopteran genes and several more distantly related genes, including one gene with a bacteria-like sequence found in both host and virus. Among the recently acquired genes is cytosolic serine hydroxymethyltransferase (cSHMT). In nearly all tested H. zea, cSHMT contained a 200 bp transposable element (TE) that was not found in cSHMT of the sister species H. armigera. No other virus has been found with host cSHMT, and the study of this shared copy, including possible interactions, may yield new insights into the function of this gene with possible applications to insect biological control, and gene editing.

2.
Sci Rep ; 13(1): 13017, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563256

ABSTRACT

Species identification is necessary to prevent introductions of exotic plant pests through global trade. Many of these pests are understudied and lack publicly available DNA sequence data on which rapid molecular identification methods can be based. One such lineage is the genus Chrysodeixis, which includes three species of potential concern for United States trade initiatives: C. includens, C. chalcites, and C. eriosoma. Here we describe a method to generate robust 45S rDNA profiles using long read sequencing in order to clarify evolutionary relationships and develop a real-time PCR identification technique. Such an identification tool will be useful in rapidly differentiating between Chrysodeixis species of quarantine concern where traditional morphological identification methods are insufficient. Molecular methods such as this greatly reduce the time spent identifying each specimen, allow for detection of eDNA, vastly increase throughput, and increase the probability of detection. The methods presented here will be generally adaptable to any understudied lepidopteran taxa that necessitates a molecular diagnostic assay and, with adjustment or testing of the primers, could be applied to any group for which development of rDNA profiles in a benchtop setting would prove useful.


Subject(s)
Moths , Animals , DNA, Ribosomal/genetics , Moths/genetics , High-Throughput Nucleotide Sequencing
3.
J Econ Entomol ; 116(3): 973-982, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37023722

ABSTRACT

Helicoverpa armigera (Hübner) is a major crop pest native to Europe, Asia, Australia, and Africa which has recently invaded South America and has caused billions of dollars in agricultural losses. Because of challenges in differentiating between H. armigera and Helicoverpa zea (Boddie), a closely related species native to North and South America, genetic tests have previously been developed to detect H. armigera DNA in pooled samples of moth legs. In this study, a field-based recombinase polymerase amplification (RPA) assay using a lateral flow strip and a qPCR melt curve assay were developed for specific detection of H. armigera DNA in pooled moth samples. In addition, a crude DNA extraction protocol for whole moths was developed to allow rapid preparation of DNA samples. The RPA field test was able to detect ≥ 10 pg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of 999 H. zea equivalents. The qPCR assay was able to detect ≥ 100 fg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of up to 99,999 H. zea equivalents. Both RPA and qPCR assays detected H. armigera in the crude DNA extracted in the field from a pool of one H. armigera moth and 999 H. zea moths. These newly developed molecular assays to detect H. armigera will contribute to large-scale surveillance programs of H. armigera.


Subject(s)
Moths , Recombinases , Animals , Moths/genetics , Australia , Europe
4.
Front Insect Sci ; 3: 1168586, 2023.
Article in English | MEDLINE | ID: mdl-38469542

ABSTRACT

Diabrotica undecimpunctata is a multivoltine polyphagous beetle species that has long been documented as a significant agricultural pest throughout its native range in North America. This beetle can vector bacterial and viral plant pathogens that result in major losses to crops such as cucumber and soybean. Many countries outside the Americas treat D. undecimpunctata as a species of quarantine importance, while in the USA only the subspecies D. u. duodecimnotata is subject to quarantine, to prevent introduction from Mexico. Identification of D. undecimpunctata on the basis of morphology alone can be complicated given the use of conflicting characters in the description of some subspecific taxa. To better understand relationships among D. undecimpunctata subspecies and other related species, we sequenced mitochondrial cytochrome oxidase 1 (CO1) and nuclear internal transcribed spacer 2 (ITS2) DNA from individuals in different subspecific taxa and across different parts of the species range using museum samples and interceptions. When our data were combined with publicly available Diabrotica data, no pattern of divergence consistent with the currently recognized subspecific designations was found. In addition, we compared phylogenetic patterns in CO1 data from the congener D. virgifera to demonstrate the utility of mitochondrial data in resolving subspecies. From the CO1 data, a diagnostic real-time PCR assay was developed that could successfully identify all haplotypes within the large D. undecimpunctata clade for use in surveys and identification at ports of entry. These findings underscore the need to resolve molecular and morphological datasets into cogent, lineage-based groupings. Such efforts will provide an evolutionary context for the study of agriculturally important attributes of Diabrotica such as host preferences, xenobiotic metabolism, and natural and anthropogenic patterns of dispersal.

5.
J Econ Entomol ; 115(6): 2125-2129, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36354050

ABSTRACT

The moth species Phthorimaea absoluta (Meyrick) (formerly Tuta absoluta) is serious threat to tomato and other Solanaceous crops worldwide and is invasive throughout Europe, Asia, and Africa. While P. absoluta has not yet been found in the U.S. recent detections in the Caribbean have raised concerns that the species could be introduced to mainland North America. To improve detection capacity, a droplet digital PCR (ddPCR) assay was developed that employs a nondestructive bulk DNA extraction method able to detect one P. absoluta sample among 200 nontargets. Such high-throughput and sensitive molecular assays are essential to preventing introductions through early detection and response. This assay can also be used in areas where P. absoluta is established to monitor outbreaks and track migratory patterns.


Subject(s)
Lepidoptera , Moths , Solanum lycopersicum , Animals , Moths/genetics , Crops, Agricultural , Polymerase Chain Reaction , Europe
6.
Phytopathology ; 112(4): 917-928, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34554008

ABSTRACT

Cytospora canker is one of the most important diseases affecting peach production in Colorado, yet previous efforts to characterize Cytospora species diversity in Colorado have relied exclusively on morphological traits. Recently, several new Cytospora species were described from peach orchards within the United States using molecular and morphological data, prompting the need to reexamine Cytospora spp. present on peach trees in Colorado. A total of 137 isolates of Cytospora spp. were collected from eight orchards in western Colorado. Isolates were sequenced at the internal transcribed spacer region and elongation factor 1-α and assessed with reference sequences in phylogenetic analyses. All isolates from western Colorado peach trees resolved with the newly described Cytospora plurivora. In addition to molecular characterization, temperature growth and virulence assays were conducted to assess phenotypic variation among the isolates from western Colorado. Variation across isolates was found both in growth at different temperatures and in virulence. Ancestral state reconstruction analyses resolved the most virulent (and most often collected) haplotypes together in a well-supported clade from which a single monophyletic origin of high virulence can be inferred. Finally, a droplet digital PCR assay was developed for use in ongoing and future studies to detect and quantify C. plurivora from field and laboratory samples.


Subject(s)
Plant Diseases , Ascomycota , Colorado , Phylogeny , Plant Diseases/microbiology , Polymerase Chain Reaction
7.
Insects ; 12(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34680654

ABSTRACT

Helicoverpa armigera (Hübner) is one of the most important agricultural pests in the world. This historically Old World species was first reported in Brazil in 2013 and has since spread throughout much of South America and into the Caribbean. Throughout North America, H. armigera surveys are ongoing to detect any incursions. Each trap is capable of capturing hundreds of native Helicoverpa zea (Boddie). The two species cannot be separated without genitalic dissection or molecular methods. A ddPCR assay is currently used to screen large trap samples, but this equipment is relatively uncommon and expensive. Here, we optimized a newly designed assay for accurate and repeatable detection of H. armigera in bulk samples across both ddPCR and less costly, and more common, real-time PCR methods. Improvements over previously designed assays were sought through multiple means. Our results suggest bulk real-time PCR assays can be improved through changes in DNA extraction and purification, so that real-time PCR can be substituted for ddPCR in screening projects. While ddPCR remains a more sensitive method for detection of H. armigera in bulk samples, the improvements in assay design, DNA extraction, and purification presented here also enhance assay performance over previous protocols.

8.
J Econ Entomol ; 113(3): 1479-1485, 2020 06 06.
Article in English | MEDLINE | ID: mdl-32173758

ABSTRACT

The tomato leafminer, Tuta absoluta (Meyrick), is a highly destructive pest of tomatoes, causing damage to leaves, stalks, buds, and fruits. Native to South America, T. absoluta is now found throughout Europe, South Asia, Africa, parts of Central America, and the Caribbean. Adults are small, with a wingspan of approximately one cm and lack distinctive markings, making morphological identification difficult. Larvae are also difficult to identify and resemble those of many other gelechiids. Due to the extensive time spent and expertise required for morphological identification, and the imminent threat to the North American tomato crop, we have developed a rapid molecular test for discriminating individual specimens of T. absoluta using a probe-based real-time polymerase chain reaction (PCR) assay. The assay is able to quickly distinguish T. absoluta from similar-sized moth specimens that are attracted to T. absoluta pheromone lures in the United States and is also able to identify larvae of T. absoluta. Decreased identification time for this critical pest will lead to more rapid identification at ports of entry and allow for more efficient trap screening for domestic monitoring programs.


Subject(s)
Lepidoptera , Moths , Solanum lycopersicum , Africa , Animals , Asia , Central America , Europe , Moths/genetics , Real-Time Polymerase Chain Reaction , South America
9.
J Econ Entomol ; 111(3): 1490-1495, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29506138

ABSTRACT

The silver Y moth [Autographa gamma (Linneaus) (Noctuidae: Plusiinae)] is a pervasive crop pest in its native range but has not been found in moth surveys in the United States. Specimens of A. gamma are often intercepted at U.S. ports of entry, so the risk of introduction of this invasive species is high. Currently, identification of Plusiinae adults captured in domestic surveys is done by morphlogical comparison; however, this method is time consuming and misidentifications have occurred in the past. A recent study outlined a real-time PCR assay capable of rapidly identifying individual A. gamma specimens using CO1. This same study provided preliminary data for a droplet digital PCR (ddPCR) assay capable of processing bulk trap samples. Here, we develop and test a ddPCR assay for detecting a single A. gamma in a trap sample of 200 individual moths. This assay will drastically reduce the time and cost needed to screen domestic trap samples for A. gamma.


Subject(s)
DNA Barcoding, Taxonomic/methods , Moths/classification , Real-Time Polymerase Chain Reaction/methods , Animals , Electron Transport Complex IV/analysis , Insect Proteins/analysis , Introduced Species , Larva/classification , Larva/genetics , Larva/growth & development , Moths/genetics , Moths/growth & development , Sensitivity and Specificity
10.
PLoS One ; 12(5): e0178704, 2017.
Article in English | MEDLINE | ID: mdl-28562660

ABSTRACT

Moths in the genus Helicoverpa are some of the most important agricultural pests in the world. Two species, H. armigera (Hübner) and H. zea (Boddie), cause the majority of damage to crops and millions of dollars are spent annually on control of these pests. The recent introduction of H. armigera into the New World has prompted extensive survey efforts for this species in the United States. Surveys are conducted using bucket traps baited with H. armigera pheromone, and, because the same pheromone compounds attract both species, these traps often capture large numbers of the native H. zea. Adult H. armigera and H. zea are very similar and can only be separated morphologically by minor differences in the genitalia. Thus, a time consuming genitalic dissection by a trained specialist is necessary to reliably identify either species, and every specimen must be dissected. Several molecular methods are available for differentiating and identifying H. armigera and H. zea, including two recently developed rapid protocols using real-time PCR. However, none of the published methods are capable of screening specimens in large batches. Here we detail a droplet digital PCR (ddPCR) assay that is capable of detecting a single H. armigera in a background of up to 999 H. zea. The assay has been tested using bulk extractions of 1,000 legs from actual trap samples and is effective even when using poor quality samples. This study provides an efficient, rapid, reproducible, and scalable method for processing H. armigera survey trap samples in the U.S. and demonstrates the potential for applying ddPCR technology to screen and diagnose invasive species.


Subject(s)
Moths/genetics , Polymerase Chain Reaction/methods , Animals , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...