Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 128(23): 239901, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749206

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.121.080405.

2.
Sci Rep ; 9(1): 13389, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527726

ABSTRACT

Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possible, to reduce the amount of required control and operation time and thus improve the quantum state coherence. Here we propose a superconducting circuit for implementing a tunable system consisting of a qutrit coupled to two qubits. This system can efficiently accomplish various quantum information tasks, including generation of entanglement of the two qubits and conditional three-qubit quantum gates, such as the Toffoli and Fredkin gates. Furthermore, the system realizes a conditional geometric gate which may be used for holonomic (non-adiabatic) quantum computing. The efficiency, robustness and universality of the presented circuit makes it a promising candidate to serve as a building block for larger networks capable of performing involved quantum computational tasks.

3.
Phys Rev Lett ; 121(8): 080405, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192627

ABSTRACT

We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this setup, we develop a variational procedure in which the coordinates of the impurity particles are slowlike variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of 100 atoms. We show that bosonic noninteracting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring (in the manner of the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.

4.
Phys Rev Lett ; 120(5): 052502, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481154

ABSTRACT

We investigate the emergence of halos and Efimov states in nuclei by use of a newly designed model that combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes ^{72}Ca (^{70}Ca+n+n) an ideal realistic candidate on the neutron dripline, and we use it as a representative example that illustrates our broadly applicable conclusions. By smooth variation of the interactions we simulate the crossover from well-bound systems to structures beyond the threshold of binding, and find that halo configurations emerge from the mean-field structure for three-body binding energy less than ∼100 keV. Strong evidence is provided that Efimov states cannot exist in nuclei. The structure that bears the most resemblance to an Efimov state is a giant halo extending beyond the neutron-core scattering length. We show that the observable large-distance decay properties of the wave function can differ substantially from the bulk part at short distances, and that this evolution can be traced with our combination of few- and many-body formalisms. This connection is vital for interpretation of measurements such as those where an initial state is populated in a reaction or by a beta decay.

5.
Nat Commun ; 7: 13070, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27721438

ABSTRACT

Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

6.
Sci Rep ; 6: 28362, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27324113

ABSTRACT

Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique.

7.
Nat Commun ; 5: 5300, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25366925

ABSTRACT

In one dimension, the study of magnetism dates back to the dawn of quantum mechanics when Bethe solved the famous Heisenberg model that describes quantum behaviour in magnetic systems. In the last decade, one-dimensional (1D) systems have become a forefront area of research driven by the realization of the Tonks-Girardeau gas using cold atomic gases. Here we prove that 1D fermionic and bosonic systems with strong short-range interactions are solvable in arbitrary confining geometries by introducing a new energy-functional technique and obtaining the full spectrum of energies and eigenstates. As a first application, we calculate spatial correlations and show how both ferro- and antiferromagnetic states are present already for small system sizes that are prepared and studied in current experiments. Our work demonstrates the enormous potential for quantum manipulation of magnetic correlations at the microscopic scale.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 1): 021115, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23005730

ABSTRACT

The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated to reproduce ground-state properties at low temperature and the noninteracting high-temperature limit of constant virial coefficients. This resembles the smearing of shell effects in finite systems with increasing temperature. Numerical results are discussed for the second and third virial coefficients as functions of dimension, temperature, interaction, and transition temperature between low- and high-energy limits.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021117, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463163

ABSTRACT

We describe a method to compute thermodynamic quantities in the harmonic approximation for identical bosons and fermions in an external confining field. We use the canonical partition function where only energies and their degeneracies enter. The number of states of given energy and symmetry is found by separating the center-of-mass motion, and by counting the remaining states of given symmetry and excitation energy of the relative motion. The oscillator frequencies that enter the harmonic Hamiltonian can be derived from realistic model parameters, and the method corresponds to an effective interaction approach based on harmonic interactions. To demonstrate the method, we apply it to systems in two dimensions. Numerical calculations are compared to a brute force method, which is considerably more computationally intensive.


Subject(s)
Algorithms , Models, Theoretical , Quantum Theory , Thermodynamics , Computer Simulation
10.
Phys Rev Lett ; 107(7): 073201, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21902390

ABSTRACT

We consider dipolar interactions between heteronuclear molecules in a low-dimensional setup consisting of two one-dimensional tubes. We demonstrate that attraction between molecules in different tubes can overcome intratube repulsion and complexes with several molecules in the same tube are stable. In situ detection schemes of the few-body complexes are proposed. We discuss extensions to many tubes and layers, and outline the implications on many-body physics.


Subject(s)
Gases/chemistry , Physical Phenomena , Optical Phenomena , Polymers/chemistry
11.
Phys Rev Lett ; 106(25): 250401, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21770613

ABSTRACT

We calculate the energy and wave functions of two particles confined to two spatial dimensions interacting via arbitrary anisotropic potentials with negative or zero net volume. The general rigorous analytic expressions are given in the weak coupling limit where universality or model independence are approached. The monopole part of anisotropic potentials is crucial in the universal limit. We illustrate the universality with a system of two arbitrarily polarized cold dipolar molecules in a bilayer. We discuss the transition to universality as a function of polarization and binding energy and compare analytic and numerical results obtained by the stochastic variational method. The universal limit is essentially reached for experimentally accessible strengths.

12.
Phys Rev Lett ; 105(9): 095301, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20868172

ABSTRACT

We study a balanced two-component system of ultracold fermions in one dimension with attractive interactions and subject to a spin-dependent optical lattice potential of opposite sign for the two components. We find states with different types of modulated pairing order parameters which are conceptually similar to π phases discussed for superconductor-ferromagnet heterostructures. Increasing the lattice depth induces sharp transitions between states of different parity. While the origin of the order parameter oscillations is similar to the Fulde-Ferrel-Larkin-Ovchinnikov phase for paired states with spin imbalance, the current system is intrinsically stable to phase separation. We discuss experimental requirements for creating and probing these novel phases.

13.
Phys Rev Lett ; 101(17): 179201; discussion 179202, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18999795
14.
Phys Rev Lett ; 96(14): 142502, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16712066

ABSTRACT

We present a new nucleosynthesis process that we denote as the nu p process, which occurs in supernovae (and possibly gamma-ray bursts) when strong neutrino fluxes create proton-rich ejecta. In this process, antineutrino absorptions in the proton-rich environment produce neutrons that are immediately captured by neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with mass numbers A>64, , making this process a possible candidate to explain the origin of the solar abundances of (92,94)Mo and (96,98)Ru. This process also offers a natural explanation for the large abundance of Sr seen in a hyper-metal-poor star.

SELECTION OF CITATIONS
SEARCH DETAIL
...