Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38634491

ABSTRACT

Quantum chemistry is one of the most promising applications for which quantum computing is expected to have a significant impact. Despite considerable research in the field of electronic structure, calculating the vibrational properties of molecules on quantum computers remains a relatively unexplored field. In this work, we develop a vibrational Adaptive Derivative-Assembled Pseudo-Trotter Variational Quantum Eigensolver (vADAPT-VQE) formalism based on an infinite product representation (IPR) of anti-Hermitian excitation operators of the Full Vibrational Configuration Interaction (FVCI) wavefunction, which allows for preparing eigenstates of vibrational Hamiltonians on quantum computers. In order to establish the vADAPT-VQE algorithm using the IPR, we study the exactness of disentangled Unitary Vibrational Coupled Cluster (dUVCC) theory and show that dUVCC can formally represent the FVCI wavefunction in an infinite expansion. To investigate the performance of the vADAPT-VQE algorithm, we numerically study whether the vADAPT-VQE algorithm generates a sequence of operators that may represent the FVCI wavefunction. Our numerical results indicate frequent appearance of critical points in the wavefunction preparation using vADAPT-VQE. These results imply that one may encounter diminishing usefulness when preparing vibrational wavefunctions on quantum computers using vADAPT-VQE and that additional studies are required to find methods that can circumvent this behavior.

2.
Sci Rep ; 9(1): 15994, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31690841

ABSTRACT

The decoupling of spin and density dynamics is a remarkable feature of quantum one-dimensional many-body systems. In a few-body regime, however, little is known about this phenomenon. To address this problem, we study the time evolution of a small system of strongly interacting fermions after a sudden change in the trapping geometry. We show that, even at the few-body level, the excitation spectrum of this system presents separate signatures of spin and density dynamics. Moreover, we describe the effect of considering additional internal states with SU(N) symmetry, which ultimately leads to the vanishing of spin excitations in a completely balanced system.

SELECTION OF CITATIONS
SEARCH DETAIL
...