Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(5): 1107-1113.e3, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38301649

ABSTRACT

A fundamental feature of vocal communication is that animals produce vocalizations with different acoustic features in different behavioral contexts (contact calls, territorial calls, courtship calls, etc.). The midbrain periaqueductal gray (PAG) is a key region that regulates vocal production, and artificial activation of the PAG can elicit the production of multiple species-typical vocalization types.1,2,3,4,5,6,7,8,9 How PAG circuits are organized to regulate the production of different vocalization types remains unknown. On the one hand, studies have found that partial PAG lesions abolish the production of some vocalization types while leaving others intact,3,8,10,11 suggesting that different populations of PAG neurons might control the production of different vocalization types. On the other hand, electrophysiological recordings have revealed individual PAG neurons that increase their activity during the production of multiple vocalization types,12,13,14 suggesting that some PAG neurons may regulate the production of more than one vocalization type. To test whether a single population of midbrain neurons regulates the production of different vocalization types, we applied intersectional methods to selectively ablate a population of midbrain neurons important for the production of ultrasonic vocalizations (USVs) in mice. We find that, although ablation of these PAG-USV neurons blocks USV production in both males and females, these neurons are not required for the production of distress calls. Our findings suggest that distinct populations of midbrain neurons control the production of different vocalization types.


Subject(s)
Ultrasonics , Vocalization, Animal , Male , Female , Mice , Animals , Vocalization, Animal/physiology , Neurons/physiology , Periaqueductal Gray/physiology , Courtship
2.
Transl Psychiatry ; 11(1): 537, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663783

ABSTRACT

The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with autism spectrum disorder (ASD). Nrp2-deficient mice show autism-like behavioral deficits and propensity to develop seizures. In order to determine the pathophysiology in Nrp2 deficiency, we examined the hippocampal numbers of interneuron subtypes and inhibitory regulation of hippocampal CA1 pyramidal neurons in mice lacking one or both copies of Nrp2. Immunostaining for interneuron subtypes revealed that Nrp2-/- mice have a reduced number of parvalbumin, somatostatin, and neuropeptide Y cells, mainly in CA1. Whole-cell recordings identified reduced firing and hyperpolarized shift in resting membrane potential in CA1 pyramidal neurons from Nrp2+/- and Nrp2-/- mice compared to age-matched wild-type controls indicating decrease in intrinsic excitability. Simultaneously, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) are reduced in Nrp2-deficient mice. A convulsive dose of kainic acid evoked electrographic and behavioral seizures with significantly shorter latency, longer duration, and higher severity in Nrp2-/- compared to Nrp2+/+ animals. Finally, Nrp2+/- and Nrp2-/- but not Nrp2+/+, mice have impaired cognitive flexibility demonstrated by reward-based reversal learning, a task associated with hippocampal circuit function. Together these data demonstrate a broad reduction in interneuron subtypes and compromised inhibition in CA1 of Nrp2-/- mice, which could contribute to the heightened seizure susceptibility and behavioral deficits consistent with an ASD/epilepsy phenotype.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Epilepsy , Animals , Autism Spectrum Disorder/genetics , Comorbidity , Hippocampus , Humans , Interneurons , Mice , Neuropilin-2/genetics
3.
PLoS One ; 16(9): e0255640, 2021.
Article in English | MEDLINE | ID: mdl-34469457

ABSTRACT

Humans are extraordinarily social, and social isolation has profound effects on our behavior, ranging from increased social motivation following short periods of social isolation to increased anti-social behaviors following long-term social isolation. Mice are frequently used as a model to understand how social isolation impacts the brain and behavior. While the effects of chronic social isolation on mouse social behavior have been well studied, much less is known about how acute isolation impacts mouse social behavior and whether these effects vary according to the sex of the mouse and the behavioral context of the social encounter. To address these questions, we characterized the effects of acute (3-day) social isolation on the vocal and non-vocal social behaviors of male and female mice during same-sex and opposite-sex social interactions. Our experiments uncovered pronounced effects of acute isolation on social interactions between female mice, while revealing more subtle effects on the social behaviors of male mice during same-sex and opposite-sex interactions. Our findings advance the study of same-sex interactions between female mice as an attractive paradigm to investigate neural mechanisms through which acute isolation enhances social motivation and promotes social behavior.


Subject(s)
Motivation , Sexual Behavior, Animal , Social Behavior , Social Isolation/psychology , Vocalization, Animal/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...