Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 118(1): 011802, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106454

ABSTRACT

We report on a direct search for sub-GeV dark photons (A^{'}), which might be produced in the reaction e^{-}Z→e^{-}ZA^{'} via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The dark photons would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75×10^{9} electrons on target. We set new limits on the γ-A^{'} mixing strength and exclude the invisible A^{'} with a mass ≲100 MeV as an explanation of the muon g_{µ}-2 anomaly.

2.
Phys Rev Lett ; 94(12): 121301, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15903903

ABSTRACT

Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)<1.16x10(-10) GeV-1 at 95% C.L. for m(a) less, similar 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.

SELECTION OF CITATIONS
SEARCH DETAIL