Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Ecology ; 101(8): e03070, 2020 08.
Article in English | MEDLINE | ID: mdl-32301506

ABSTRACT

Identifying and clearly communicating the drivers of ecosystem function is a crucially important goal for both basic and applied ecology. This has proven difficult because the putative causes (e.g., environment, species identity, biodiversity, and functional traits) are numerous and correlated. The problem is exacerbated by a lack of a formal framework for unambiguously relating theoretical language to precise, quantitative expressions of that language. Using a formal framework for the graphical expression of complex causal hypotheses, we developed a causal diagram of the concepts required to comprehensively test whether hypothesized sets of functional traits mediate the relationship between community structure and ecosystem function. We then used causal analysis, simulations, and field data to develop and test analytical strategies for understanding how community structure influences ecosystem functions via functional traits. Formal causal analysis showed that biodiversity-ecosystem function correlations are noncausal associations. Using simulations, we showed how biodiversity correlations and species identity effects can arise from misspecification or incomplete mediation by functional trait composites. We also found that different types of model misspecification result in different patterns of residuals, which may be used to diagnose gaps in functional trait hypotheses. Treating the model misspecifications eliminated associations between species identity or biodiversity and ecosystem function. Finally, we provide an example of the analysis of field data to demonstrate how to use these insights to conduct a research program that has the goal of understanding the mechanistic trait relationships that link community structure to ecosystem function.


Subject(s)
Biodiversity , Ecosystem , Ecology , Phenotype
3.
Ecology ; 101(3): e02971, 2020 03.
Article in English | MEDLINE | ID: mdl-31943143

ABSTRACT

Establishment and persistence are central to community assembly and are determined by how traits interact with the environment to determine performance (trait-environment interactions). Community assembly studies have rarely considered such trait-environment interactions, however, which can lead to incorrect inferences about how traits affect assembly. We evaluated how functional traits, environmental conditions, and trait-environment interactions structure plant establishment, as a measure of performance. Within 12 prairie restorations created by sowing 70 species, we quantified environmental conditions and counted individuals of each seeded species to quantify first-year establishment. Three trait-environment interactions structured establishment. Leaf nitrogen interacted with herbivore pressure, as low leaf nitrogen species established relatively better under higher herbivory than species with high leaf nitrogen. Soil moisture interacted with root mass fraction (RMF), with low-RMF species establishing better with low soil moisture and higher-RMF species better on wetter soils. Specific leaf area (SLA) interacted with light availability, as low-SLA species established better under high light conditions and high-SLA species under low light conditions. Our work illustrates how community assembly can be better described by trait-environment interactions than correlating traits or environment with performance. This knowledge can assist species selection to maximize restoration success.


Subject(s)
Gene-Environment Interaction , Plants , Herbivory , Humans , Nitrogen , Plant Leaves , Soil
4.
Ecology ; 100(4): e02634, 2019 04.
Article in English | MEDLINE | ID: mdl-30693482

ABSTRACT

There is strong evidence for a positive relationship between biodiversity and ecosystem functioning at local spatial scales. However, how different aspects of biodiversity relate to multiple ecosystem functions (multifunctionality) across heterogeneous landscapes, and how the magnitude of biodiversity, dominant species, and environmental effects on functioning compare, remain poorly understood. We compared relationships between plant phylogenetic, functional, and taxonomic diversity and ecosystem multifunctionality across 29 restored grasslands. Functional diversity was positively associated with multifunctionality, more strongly than other diversity measures; however, landscape composition explained nearly four times more variation in multifunctionality than did functional diversity, with plots within human-modified landscapes supporting lower multifunctionality. Individual functions were typically more strongly correlated with environmental variables than with diversity. We also found that abundance of the dominant species, Andropogon gerardii, was positively correlated with multifunctionality. Plant diversity, dominant species, and underlying environmental conditions underpin ecosystem multifunctionality in grasslands, but how biodiversity is measured matters for the strength and direction of biodiversity-ecosystem function relationships. Finally, in natural systems environmental variation unrelated to local biodiversity is important for determining ecosystem functioning.


Subject(s)
Ecosystem , Grassland , Biodiversity , Humans , Phylogeny , Plants
5.
Oecologia ; 188(3): 837-848, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30120547

ABSTRACT

The loss of biodiversity at local and larger scales has potentially dramatic effects on ecosystem functioning. Many studies have shown that ecosystem functioning depends on biodiversity, but the role of beta diversity, spatial variation in community composition, is less clear than that of local-scale (alpha) diversity. To test the hypothesis that beta diversity would increase ecosystem multifunctionality through variation in species functional traits, we gathered data on plant community composition, plant functional traits, and seven ecosystem functions across 29 restored prairies. We found that averaged multifunctionality (mean of seven ecosystem functions) increased with both taxonomic beta diversity and functional beta diversity. The abundance of the dominant species, big bluestem, played a more minor role, suggesting a limited role for the selection effect. Neither taxonomic nor functional alpha richness was associated with multifunctionality, though this finding may be sensitive to the identity of the functions included because alpha diversity was associated with some individual functions in opposing directions. These findings suggest that in systems structured largely by natural processes, beta diversity (a patchwork of functionally different plant communities) and dominant species abundance may be more important than alpha diversity in fostering ecosystem multifunctionality. These findings suggest the need for an increased focus on community heterogeneity to reestablish functional ecosystems during restoration.


Subject(s)
Ecosystem , Grassland , Biodiversity , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...