Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 6(11): 1734-1744, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37982127

ABSTRACT

The role of monoamine oxidase A (MAO-A) in the aggressiveness of prostate cancer (PCa) has been established in recent years. The molecular imaging of MAO-A expression could offer a noninvasive tool for the visualization and quantification of highly aggressive PCa. This study reports the synthesis and preclinical evaluation of 11C- and 18F-labeled MAO-A inhibitors as positron emission tomography (PET) tracers for proof-of-concept studies in animal models of PCa. Good manufacturing practice production and quality control of these radiotracers using an automated platform was achieved. PET imaging was performed in an LNCaP tumor model with high MAO-A expression. The tumor-to-muscle (T/M) uptake ratio of [11C]harmine (4.5 ± 0.5) was significantly higher than that for 2-[18F]fluoroethyl-harmol (2.3 ± 0.7) and [11C]clorgyline (2.0 ± 0.1). A comparable ex vivo biodistribution pattern in all radiotracers was observed. Furthermore, the tumor uptake of [11C]harmine showed a dramatic reduction (T/M = 1) in a PC3 tumor model with limited MAO-A expression, and radioactivity uptake in LNCaP tumors was blocked in the presence of nonradioactive harmine. Our findings suggest that [11C]harmine may serve as an attractive PET probe for the visualization of MAO-A expression in highly aggressive PCa. These radiotracers have the potential for clinical translation and may aid in the development of personalized therapeutic strategies for PCa patients.

2.
Chem Biol Drug Des ; 98(1): 182-191, 2021 07.
Article in English | MEDLINE | ID: mdl-33982434

ABSTRACT

In vivo receptor targeting with radiolabelled peptide-based probes is an attractive approach for the development of novel radiotracers for molecular imaging. This work presents the development and characterization of two novel neuropeptide Y analogues labelled with a positron emitter 68 Ga, for potential use in breast cancer imaging. Both analogues share the same amino acid sequence and were derivatized with NOTA through either a lysine linker (L1) or an acetylated lysine (L2). In both cases, a single product with radiochemical purity higher than 95% was obtained. The two complexes were hydrophilic, showed remarkable in vitro stability, good cellular uptake, binding affinity in the nanomolar range and high cellular internalization rate. Biodistribution studies revealed low blood uptake and elimination through the urinary tract. The addition of an acetyl group in the spacer increased the lipophilicity of C2 and modified the reactivity of the ε-amino group of the lysine which resulted in lower protein binding and lower percentage of injected dose in bladder and urine. The tumour versus muscle ratio was (3.8 ± 0.4) for 68 Ga-L1 and (4.7 ± 0.4) for 68 Ga-L2. These results encourage performing further studies in order to complete the evaluation of both tracers as potential radiopharmaceutical for breast cancer imaging.


Subject(s)
Breast Neoplasms/diagnostic imaging , Gallium Radioisotopes/chemistry , Neuropeptide Y/chemistry , Radiopharmaceuticals/chemistry , Amines/chemistry , Amino Acid Sequence , Animals , Biological Transport , Cineradiography , Female , Humans , Lysine/chemistry , Mice, Nude , Neoplasms, Experimental , Neuropeptide Y/blood , Neuropeptide Y/pharmacokinetics , Neuropeptide Y/urine , Protein Binding , Radiopharmaceuticals/blood , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/urine , Staining and Labeling , Structure-Activity Relationship , Tissue Distribution
3.
EJNMMI Radiopharm Chem ; 2(1): 10, 2017.
Article in English | MEDLINE | ID: mdl-29503851

ABSTRACT

BACKGROUND: The synthesis of [11C]L-deprenyl-D2 for imaging of astrocytosis with positron emission tomography (PET) in neurodegenerative diseases has been previously reported. [11C]L-deprenyl-D2 radiosynthesis requires a precursor, L-nordeprenyl-D2, which has been previously synthesized from L-amphetamine as starting material with low overall yields. Here, we present an efficient synthesis of L-nordeprenyl-D2 organic precursor as free base and automated radiosynthesis of [11C]L-deprenyl-D2 for PET imaging of astrocytosis. The L-nordeprenyl-D2 precursor was synthesized from the easily commercial available and cheap reagent L-phenylalanine in five steps. Next, N-alkylation of L-nordeprenyl-D2 free base with [11C]MeOTf was optimized using the automated commercial platform GE TRACERlab® FX C Pro. RESULTS: A simple and efficient synthesis of L-nordeprenyl-D2 precursor of [11C]L-deprenyl-D2 as free base has been developed in five synthetic steps with an overall yield of 33%. The precursor as free base has been stable for 9 months stored at low temperature (-20 °C). The labelled product was obtained with 44 ± 13% (n = 12) (end of synthesis, decay corrected) radiochemical yield from [11C]MeI after 35 min synthesis time. The radiochemical purity was over 99% in all cases and specific activity was (170 ± 116) GBq/µmol. CONCLUSIONS: A high-yield synthesis of [11C]L-deprenyl-D2 has been achieved with high purity and specific activity. L-nordeprenyl-D2 precursor as free amine was applicable for automated production in a commercial synthesis module for preclinical and clinical application.

4.
Appl Radiat Isot ; 110: 47-52, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26760951

ABSTRACT

Two (11)C-labelled PET tracers, (R)-N-[(11)C]methyl-N-(3,3-dideuteropropargyl)-1-phenylpropan-2-amine ([(11)C]L-deprenyl-D2, [(11)C]DED) and (S)-N-[(11)C]methyl-N-propargyl-1-phenylpropan-2-amine ([(11)C]D-deprenyl, [(11)C]DDE) were synthesised. One step N-alkylation with [(11)C]MeI or [(11)C]MeOTf was performed using the automated platform TRACERlab® FX-C Pro. The labelled products were obtained with (37±15)% (n=10) (end of synthesis, decay corrected from [(11)C]MeI) radiochemical yields from [(11)C]MeI after 38±3min synthesis time. In all cases, radiochemical purity was over 99% when [(11)C]MeOTf was used. This synthesis using a commercial platform makes these tracers more accessible for clinical research purposes.


Subject(s)
Carbon Radioisotopes , Radiopharmaceuticals/chemical synthesis , Selegiline/chemical synthesis , Carbon Radioisotopes/chemistry , Humans , Isotope Labeling/instrumentation , Isotope Labeling/methods , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Selegiline/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...