Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 14(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34772171

ABSTRACT

Coating processes are commonly used in materials science to protect a core or modify material properties. We describe a hydrothermal coating process using TEOS (tetraethyl orthosilicate), a widely used precursor for silica coatings, on three representative template materials (carbon nanotubes, silica, and polystyrene nanoparticles) with different properties and shapes. We compare the efficiency of previously published protocols for silica coatings at room temperature and atmospheric pressure with the hydrothermal process at 160 °C and 3 bar. The hydrothermal method achieves higher yields and thicker silica coatings with the same amount of precursor when compared to the conventional way, thus offering higher effectiveness. Furthermore, the hydrothermal coating process yields more homogeneous shells with a higher density, making hydrothermal coating the method of choice when mechanical integrity and low permeability of the coating are required.

2.
ACS Appl Mater Interfaces ; 13(1): 1386-1397, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33389993

ABSTRACT

Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly(2-oxazoline)s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.

3.
J Raman Spectrosc ; 51(3): 422-431, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32214622

ABSTRACT

Vibrational spectroscopy is a very suitable tool for investigating the plant cell wall in situ with almost no sample preparation. The structural information of all different constituents is contained in a single spectrum. Interpretation therefore heavily relies on reference spectra and understanding of the vibrational behavior of the components under study. For the first time, we show infrared (IR) and Raman spectra of dibenzodioxocin (DBDO), an important lignin substructure. A detailed vibrational assignment of the molecule, based on quantum chemical computations, is given in the Supporting Information; the main results are found in the paper. Furthermore, we show IR and Raman spectra of synthetic guaiacyl lignin (dehydrogenation polymer-G-DHP). Raman spectra of DBDO and G-DHP both differ with respect to the excitation wavelength and therefore reveal different features of the substructure/polymer. This study confirms the idea previously put forward that Raman at 532 nm selectively probes end groups of lignin, whereas Raman at 785 nm and IR seem to represent the majority of lignin substructures.

4.
Nano Lett ; 20(4): 2647-2653, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32196350

ABSTRACT

Wood, as the most abundant carbon dioxide storing bioresource, is currently driven beyond its traditional use through creative innovations and nanotechnology. For many properties the micro- and nanostructure plays a crucial role and one key challenge is control and detection of chemical and physical processes in the confined microstructure and nanopores of the wooden cell wall. In this study, correlative Raman and atomic force microscopy show high potential for tracking in situ molecular rearrangement of wood polymers during compression. More water molecules (interpreted as wider cellulose microfibril distances) and disentangling of hemicellulose chains are detected in the opened cell wall regions, whereas an increase of lignin is revealed in the compressed areas. These results support a new more "loose" cell wall model based on flexible lignin nanodomains and advance our knowledge of the molecular reorganization during deformation of wood for optimized processing and utilization.

5.
Sep Purif Technol ; 204: 30-37, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30319309

ABSTRACT

The global olive oil industry annually generates approximately 750,000-1,500,000 tons of Olea europaea leaves as waste that are typically burned for energy production. Yet, this agricultural by-product is a rich source of oleanolic acid, a high value triterpenic acid with outstanding pharmaceutical and nutraceutical activities. The present study focuses on the extraction of oleanolic acid from dried O. europaea leaves using aqueous solutions of surface-active ionic liquids as alternative solvents. A number of imidazolium-based ionic liquids with variable chain length, different anions and optional side-chain functionalization was synthesized and employed in the extraction of oleanolic acid. Ionic liquids with long alkyl chains remarkably enhance the solubility of oleanolic acid in water, thus being able to compete with the solubilities afforded by molecular organic solvents, such as chloroform. Consequently, they are suitable alternatives for the solid-liquid extraction of triterpenic acids from natural matrices and provide improved extraction yields of up to 2.5 wt% oleanolic acid extracted from olive tree leaves.

6.
Polymers (Basel) ; 10(4)2018 Apr 17.
Article in English | MEDLINE | ID: mdl-30966486

ABSTRACT

Thermoresponsive nanoparticles are promising smart materials for many applications. However, a rational design for applications requires a deeper understanding and experimental verification of the various parameters that influence the thermoresponsiveness of the spherical polymer brushes that define most of such nanomaterials. Therefore, we investigate superparamagnetic iron oxide nanoparticles (SPION) grafted with poly(2-isopropyl-2-oxazoline) (6⁻33 kg mol-1) by temperature-cycled dynamic light scattering and differential scanning calorimetry. The grafting of dense spherical polymer brushes leads to lower aggregation temperatures and transition enthalpies when compared with the free polymer. The transition enthalpy and temperature depend on the polymer shell size and structure. The addition of kosmotropic salts decreases the aggregation temperature following the Hofmeister series.

7.
Biomacromolecules ; 19(5): 1435-1444, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29161516

ABSTRACT

The morphology and topology of thermoresponsive polymers have a strong impact on their responsive properties. Grafting onto spherical particles has been shown to reduce responsiveness and transition temperatures; grafting of block copolymers has shown that switchable or retained wettability of a surface or particle during desolvation of one block can take place. Here, doubly thermoresponsive block copolymers were grafted onto spherical, monodisperse, and superparamagnetic iron oxide nanoparticles to investigate the effect of thermal desolvation on spherical brushes of block copolymers. By inverting the block order, the influence of core proximity on the responsive properties of the individual blocks could be studied as well as their relative influence on the nanoparticle colloidal stability. The inner block was shown to experience a stronger reduction in transition temperature and transition enthalpy compared to the outer block. Still, the outer block also experiences a significant reduction in responsiveness due to the restricted environment in the nanoparticle shell compared to that of the free polymer state. The demonstrated pronounced distance dependence importantly implies the possibility, but also the necessity, to radially tailor polymer hydration transitions for applications such as drug delivery, hyperthermia, and biotechnological separation for which thermally responsive nanoparticles are being developed.


Subject(s)
Hot Temperature , Metal Nanoparticles/chemistry , Polymers/chemistry , Colloids/chemistry , Ferric Compounds/chemistry , Wettability
8.
Monatsh Chem ; 148(8): 1539-1546, 2017.
Article in English | MEDLINE | ID: mdl-28751794

ABSTRACT

ABSTRACT: Crosslinked colloidal monolayers are promising as templates, lithographic masks, filtration membranes, or membranes for controlled release rates in drug delivery. We demonstrate assembly of monodisperse micron-sized polystyrene (PS) beads at an air/water interface, which are transformed into crystalline monolayers using addition of surface-active agents. Vapor annealing methods with solvents (toluene and xylene) and crosslinking agents (divinylbenzene) were investigated regarding their ability to crosslink these floating monolayers directly at the interface, generating crosslinked membranes with crystal size up to 44 cm2, domain size up to 1.9 mm2, and nano-sized pores (100-300 nm). The demonstrated fabrication method emphasizes short fabrication time using a simple setup.

9.
J Colloid Interface Sci ; 500: 321-332, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28412639

ABSTRACT

Thermoresponsive core-shell nanoparticles represent an interesting class of materials with a triggered solubility transition. However, depending on the system, their aggregation behavior above the lower critical solution temperature (LCST) is ambiguous and obviously linked to a multitude of parameters. The induced aggregation of a set of well characterized poly(N-isopropylacrylamide)-nitrodopamine grafted superparamagnetic iron oxide nanoparticles is investigated with respect to the PNIPAM molecular weight (5-30kDa) and concentration using differential scanning calorimetry and temperature-cycled dynamic light scattering measurements. PNIPAM molecular weight clearly influences the thermoresponsiveness of the material, including LCST, colloidal aggregation and deaggregation as well as transition enthalpy. Furthermore, a strong impact of topology (grafted vs. free polymer chain) on the thermoresponsiveness is observed. Cluster size above the LCST depends on concentration and PNIPAM molecular weight. This makes it reasonable to conduct aggregation experiments under constant (high) particle molar concentration for comparative studies. Similarly, low particle molar concentration is used to elucidate individual particle shell properties by avoiding masking inter-particle effects.

10.
Nanoscale ; 9(8): 2793-2805, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28155937

ABSTRACT

Hydrophilic polymer-coated iron oxide nanoparticles are potential materials for a plethora of applications in the biotechnological field. Typical such polymers, e.g. dextran or poly(ethylene glycol), lack the ability to tailor the biological response to an environmental trigger, while common responsive polymers such as poly(N-isopropylacrylamide) or poly(acrylic acid) are not suitable for biomedical applications. We present the synthesis and characterization of superparamagnetic iron oxide nanoparticles with thermoresponsive polyoxazoline brushes grafted at unprecedented density using nitrodopamine anchor chemistry. Reversible aggregation/deaggregation is observed in water and biological medium, confirming control over the colloidal stability. Thermal switching of the solubility could only be achieved by global heating of the sample, while local magnetothermal heating did not produce a sufficiently strong temperature gradient through the brush. Varying the polymer composition allows for tuning of the lower critical solution temperature (LCST) as well as the average nanoparticle cluster size obtained upon heating. The LCST of polyoxazolines and the thermal colloidal stability are shown to be greatly affected by ion concentration, by polymer grafting density and also by the presence of serum protein; this shows that transition temperatures of free polymers in water can be very misleading for the design of polymer-coated nanomaterials for biomedical applications. Finally, the thermoresponsive SPION are shown to be non-cytotoxic and with a low cell uptake scaling with the hydration of the polymer brush, which is tuned by the polymer composition. Thus, we demonstrate that pozylated nanoparticles provide the advantages of PEG- and PNIPAM-grafted nanoparticles, but provide a tunable and more easily functionalizable platform for further development.


Subject(s)
Magnetite Nanoparticles , Oxazoles/chemistry , Temperature , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Polymers , Serum
11.
RSC Adv ; 7(65): 41144-41151, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-29308189

ABSTRACT

We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed.

12.
J Org Chem ; 81(24): 12332-12339, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27978714

ABSTRACT

The design and properties of surface-active ionic liquids that are able to form stable microemulsions with heptane and water are presented, and their promise as reaction media for thermomorphic palladium-catalyzed cross-coupling reactions is demonstrated.

13.
ACS Nano ; 10(11): 9974-9982, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27783496

ABSTRACT

Emerging biomedical applications such as molecular imaging and drug delivery often require directed binding of nanoparticles to cell-membrane receptors. The specific apparent affinity of such ligand-functionalized particles is size-dependent, an observation so far solely attributed to multivalent receptor-ligand interaction. We question the universality of this explanation by demonstrating that the binding kinetics also depends on weak, attractive colloidal-type interaction between nanoparticles and a lipid membrane. Applying label-free single-particle imaging, we correlate binding of nanoparticles targeted to a cell-mimetic lipid membrane with the distribution of nontargeted particles freely diffusing close to the membrane interface. This analysis shows that already a weak, kBT-scale attraction present between 50 nm gold nanoparticles and the membrane renders these particles an order of magnitude higher avidity compared to 20 nm particles. A stronger emphasis on nonspecific particle-membrane interaction might thus be required to accurately predict nanoparticle targeting and other similar processes such as cellular uptake of exosomes and viruses.


Subject(s)
Drug Delivery Systems , Metal Nanoparticles , Cell Membrane , Gold , Ligands , Nanoparticles , Particle Size , Protein Binding , Viruses/drug effects
14.
Langmuir ; 32(17): 4259-69, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27046133

ABSTRACT

Fundamental research on nanoparticle (NP) interactions and development of next-generation biomedical NP applications relies on synthesis of monodisperse, functional, core-shell nanoparticles free of residual dispersants with truly homogeneous and controlled physical properties. Still, synthesis and purification of e.g. such superparamagnetic iron oxide NPs remain a challenge. Comparing the success of different methods is marred by the sensitivity of analysis methods to the purity of the product. We synthesize monodisperse, oleic acid (OA)-capped, Fe3O4 NPs in the superparamagnetic size range (3-10 nm). Ligand exchange of OA for poly(ethylene glycol) (PEG) was performed with the PEG irreversibly grafted to the NP surface by a nitrodopamine (NDA) anchor. Four different methods were investigated to remove excess ligands and residual OA: membrane centrifugation, dialysis, size exclusion chromatography, and precipitation combined with magnetic decantation. Infrared spectroscopy and thermogravimetric analysis were used to determine the purity of samples after each purification step. Importantly, only magnetic decantation yielded pure NPs at high yields with sufficient grafting density for biomedical applications (∼1 NDA-PEG(5 kDa)/nm(2), irrespective of size). The purified NPs withstand challenging tests such as temperature cycling in serum and long-term storage in biological buffers. Dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering show stability over at least 4 months also in serum. The successful synthesis and purification route is compatible with any conceivable functionalization for biomedical or biomaterial applications of PEGylated Fe3O4 NPs.

15.
Phys Chem Chem Phys ; 18(19): 13375-84, 2016 05 21.
Article in English | MEDLINE | ID: mdl-27121134

ABSTRACT

A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions.

16.
Chem Mater ; 27(13): 4763-4771, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26321792

ABSTRACT

The promising applications of core-shell nanoparticles in the biological and medical field have been well investigated in recent years. One remaining challenge is the characterization of the structure of the hydrated polymer shell. Here we use small-angle X-ray scattering (SAXS) to investigate iron oxide core-poly(ethylene glycol) brush shell nanoparticles with extremely high polymer grafting density. It is shown that the shell density profile can be described by a scaling model that takes into account the locally very high grafting density near the core. A good fit to a constant density region followed by a star-polymer-like, monotonously decaying density profile is shown, which could help explain the unique colloidal properties of such densely grafted core-shell nanoparticles. SAXS experiments probing the thermally induced dehydration of the shell and the response to dilution confirmed that the observed features are associated with the brush and not attributed to structure factors from particle aggregates. We thereby demonstrate that the structure of monodisperse core-shell nanoparticles with dense solvated shells can be well studied with SAXS and that different density models can be distinguished from each other.

17.
ACS Appl Mater Interfaces ; 7(34): 19342-52, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26270412

ABSTRACT

Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. "Grafting-to" and "grafting-from" methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction.


Subject(s)
Acrylic Resins/chemistry , Ferric Compounds/chemistry , Magnetic Phenomena , Nanoparticles/chemistry , Temperature , Dynamic Light Scattering , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared
18.
European J Org Chem ; 2015(11): 2374-2381, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26279638

ABSTRACT

Hydrophilic coordinating chiral ionic liquids with an amino alcohol substructure were developed and efficiently applied to the asymmetric reduction of ketones. Their careful design and adaptability to the desired reaction conditions allow for these chiral ionic liquids to be used as the sole source of chirality in a ruthenium-catalyzed transfer hydrogenation reaction of aromatic ketones. When used in this reaction system, these chiral ionic liquids afforded excellent yields and high enantioselectivities.

19.
Nanoscale ; 7(25): 11216-25, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26061616

ABSTRACT

Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of applications in e.g. the biomedical field, for which brushes of biocompatible polymers such as poly(ethylene glycol) (PEG) have to be densely grafted to the core. Grafting of such shells to monodisperse iron oxide NPs has remained a challenge mainly due to the conflicting requirements to replace the ligand shell of as-synthesized NPs with irreversibly bound PEG dispersants. We introduce a general two-step method to graft PEG dispersants from a melt to iron oxide NPs first functionalized with nitrodopamine (NDA). This method yields uniquely dense spherical PEG-brushes (∼3 chains per nm(2) of PEG(5 kDa)) compared to existing methods, and remarkably colloidally stable NPs also under challenging conditions.

20.
Anal Bioanal Chem ; 406(30): 7773-84, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25381609

ABSTRACT

To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.


Subject(s)
DNA, Plant/isolation & purification , Ionic Liquids/chemistry , Zea mays/chemistry , Buffers , Cetrimonium , Cetrimonium Compounds/chemistry , DNA, Plant/genetics , Genome, Plant , Imidazoles/chemistry , Surface-Active Agents/chemistry , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...