Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37503198

ABSTRACT

Regulating the activity of discrete neuronal populations in living mammals after delivery of modified ion channels can be used to map functional circuits and potentially treat neurological diseases. Here we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity in motor circuits when exposed to magnetic fields. AAV-mediated delivery of a cre-dependent nanobody-TRPV1 calcium channel into the striatum of adenosine 2a (A2a) receptor-cre driver mice led to restricted expression within D2 neurons, resulting in motor freezing when placed in a 3T MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed focal activation of the target region in response to the magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing cre into the globus pallidus led to similar circuit specificity and motor responses. Finally, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in subthalamic nucleus (STN) projection neurons in PitX2-cre parkinsonian mice resulted in reduced local c-fos expression and a corresponding improvement in motor rotational behavior during magnetic field exposure. These data demonstrate that AAV delivery of magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits non-invasively in vivo using clinically available devices for both preclinical analysis of circuit effects on behavior and potential human clinical translation.

SELECTION OF CITATIONS
SEARCH DETAIL
...