Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 239(6): 1723-38, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20503368

ABSTRACT

We asked whether specific mesenchymal/epithelial (M/E) induction generates olfactory receptor neurons (ORNs), vomeronasal neurons (VRNs), and gonadotropin-releasing hormone (GnRH) neurons, the major neuron classes associated with the olfactory epithelium (OE). To assess specificity of M/E-mediated neurogenesis, we compared the influence of frontonasal mesenchyme on frontonasal epithelium, which becomes the OE, with that of the forelimb bud. Despite differences in position, morphogenetic and cytogenic capacity, both mesenchymal tissues support neurogenesis, expression of several signaling molecules and neurogenic transcription factors in the frontonasal epithelium. Only frontonasal mesenchyme, however, supports OE-specific patterning and activity of a subset of signals and factors associated with OE differentiation. Moreover, only appropriate pairing of frontonasal epithelial and mesenchymal partners yields ORNs, VRNs, and GnRH neurons. Accordingly, the position and molecular identity of specialized frontonasal epithelia and mesenchyme early in gestation and subsequent inductive interactions specify the genesis and differentiation of peripheral chemosensory and neuroendocrine neurons.


Subject(s)
Cell Differentiation/physiology , Gonadotropin-Releasing Hormone/metabolism , Neurons/cytology , Neurons/metabolism , Olfactory Receptor Neurons/metabolism , Animals , Embryo, Mammalian , Epithelium/metabolism , Mice , Mice, Transgenic , Morphogenesis , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Signal Transduction , Transcription Factors/metabolism
2.
Genes Brain Behav ; 2(5): 282-94, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14606693

ABSTRACT

The limbic system, and in particular the amygdala, have been implicated in autism. The amygdala is a complex structure that in rodents consists of at least 12 different nuclei or subnuclei. A comparative analysis of amygdala neuroanatomy in normal vs. autistic brains would be aided by the availability of molecular markers to unambiguously recognize these different amygdala substructures. Here we report on the development of methods to identify genes enriched in the central, lateral and medial nuclei of the rodent amygdala. Our results suggest that laser-capture microdissection of specific amygdala subnuclei, when combined with linear amplification of cRNA probes for oligonucleotide microarray hybridization, can efficiently identify genes whose expression is confined to these substructures. Importantly, many of these genes were missed in previous gene expression-profiling experiments using whole amygdala tissue. The isolation of human orthologs of these subnucleus-specific genes, and/or the application of these methods directly to human tissue, may provide useful markers for characterizing neuropathological correlates of autism, as well as for identifying molecular differences between normal and autistic brains.


Subject(s)
Amygdala/pathology , Amygdala/physiopathology , Autistic Disorder/genetics , Autistic Disorder/pathology , Gene Expression Profiling , Microdissection/methods , Oligonucleotide Array Sequence Analysis , Animals , Lasers , Mice , Nucleic Acid Amplification Techniques , Organ Specificity , RNA, Complementary/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Proc Natl Acad Sci U S A ; 98(9): 5270-5, 2001 Apr 24.
Article in English | MEDLINE | ID: mdl-11320257

ABSTRACT

Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions, relative to the others. In situ hybridization performed on a subset of amygdala-enriched genes confirmed in most cases the overall region-specificity predicted by the microarray data and identified additional sites of brain expression not examined on the microarrays. Strikingly, the majority of these genes exhibited boundaries of expression within the amygdala corresponding to cytoarchitectonically defined subnuclei. These results define a unique set of molecular markers for amygdaloid subnuclei and provide tools to genetically dissect their functional roles in different emotional behaviors.


Subject(s)
Amygdala/metabolism , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Algorithms , Animals , Female , In Situ Hybridization , Male , Mice , Mice, Inbred Strains , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...